

Caparopowin ochapor permit with a second stand of the second stand of the second stand of the second stand s

Саратовский государственный университет им. Н.Г. Чернышевского Научно-образовательный институт оптики и биофотоники СГУ В.П. Рябухо О ОБЩЕМУ О Институт проблем точной механики и управления Российской Академии Наук

СБОРНИК ЗАДАЧ ПО ОБЩЕМУ КУРСУ ФИЗИКИ. лвая опт лвая опт учебное пособие

ВОЛНОВАЯ ОПТИКА

Саратов 2010 г.

<mark>ББК</mark>

УДК 535

В.П. Рябухо

СБОРНИК ЗАДАЧ ПО ОБЩЕМУ КУРСУ ФИЗИКИ: ВОЛНОВАЯ ОПТИКА: Учебное пособие: Для вузов. – Саратов. Саратовский государственный университет. 2010. – 61 с.

В сборнике представлены задачи по широкому кругу волновых явлений в оптике, изучаемых в рамках университетского курса физической оптики. Задачи составлены по основным разделам волновой оптики: электромагнитные волны и колебания оптического диапазона; спектральные свойства электромагнитных волн, поляризация колебаний и волн, отражение и преломление света, полное внутреннее отражение, оптика анизотропных сред и кристаллооптика, интерференция монохроматических и взаимно когерентных волн, интерференция частично когерентного света, многолучевая интерференция, дифракция света, дифракционные решетки, дифракция света на объемных решетках и акустических волнах, оптическая голография.

Сборник задач предназначен в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальностям: Физика (010701), Радиофизика и электроника (010801), Физика открытых нелинейных систем (010710), направлениям: Физика (010700), Радиофизика (010800) и другим физическим и техническим специальностям и направлениям подготовки в университетах.

© В.П. Рябухо, 2010

СОДЕРЖАНИЕ

Раздел 1. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ ОПТИЧЕСКОГО ДИАПАЗОНА.	C
ПОЛЯРИЗАЦИЯ КОЛЕБАНИЙ	
1.1. Уравнения и параметры электромагнитных волн	<u> </u>
1.2. Спектральные свойства электромагнитных волн	
1.3. Поляризация электромагнитных волн	
1.4. Энергия, мощность, интенсивность света	
1.5. Стоячие электромагнитные волны	
Раздел 2. ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ СВЕТА	
2.1. Формулы Френеля	
2.2. Энергетические коэффициенты отражения и пропускания	
2.2. Полное внутреннее отражение	
Раздел 3. ОПТИКА АНИЗОТРОПНЫХ СРЕД. КРИСТАЛЛООПТИКА	
3.1. Преломление света на границе с анизотропной средой	
3.2. Поляроиды и фазовые пластины	
3.3. Интерференция поляризованного света	
3.4. Поляризационные призмы	
3.5. Индуцированная анизотропия оптических свойств. Оптическая активность	
Раздел 4. ИНТЕРФЕРЕНЦИЯ СВЕТА	
4.1. Интерференция монохроматического и взаимно когерентного света	
4.2. Интерферометры с делением по амплитуде. Интерферометр Майкел	ьсона
интерферометр Маха-Цендера	
4.3. Интерферометры с делением по волновому фронту. Интерферометр Юнга.	
4.4. Интерференция частично когерентного света	
4.5. Многолучевая интерференция. Интерферометр Фабри-Перо	
Раздел 5. ДИФРАКЦИЯ СВЕТА	
5.1. Зонная теория дифракции Френеля	
5.2. Дифракция дальнего поля (дифракция Фраунгофера)	
5.3. Дифракционная расходимость оптических пучков. Дифракционный	пред
разрешения оптических систем	
5.4. Дифракционные решетки	
5.5. Дифракция света на объемных решетках. Дифракция на акустических волн	ax

Предисловие

В сборнике представлены задачи по широкому кругу волновых явлений в оптике, изучаемых в рамках университетского курса физической оптики. Задачи составлены по основным разделам волновой оптики: электромагнитные волны и колебания оптического диапазона; спектральные свойства электромагнитных волн, поляризация колебаний и волн, отражение и преломление света, полное внутреннее отражение, оптика анизотропных сред и кристаллооптика, интерференция монохроматических и взаимно когерентных волн, интерференция частично когерентного света, многолучевая интерференция, дифракция света, дифракционные решетки, дифракция света на объемных решетках и акустических волнах, оптическая голография.

Задачи подобраны таким образом, чтобы их решения способствовало изучению и пониманию основных положений соответствующих разделов волновой оптики. С этой целью в сборник включены достаточно большое количество относительно простых задач по всем разделам, решение которых позволяет закрепить знания, полученные на лекционных и лабораторных занятиях. Часть задач по своему содержанию может быть использована в качестве заданий для самостоятельной работы студентов. Большинство задач дополнено схемными иллюстрациями, в той или иной степени поясняющие и уточняющие условия задачи, поскольку изучение оптических явлений сопряжено с образными пространственными представлениями.

Сборник задач предназначен в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальностям: Физика (010701), Радиофизика и электроника (010801), Физика открытых нелинейных систем (010710), направлениям: Физика (010700), Радиофизика (010800) и другим физическим и техническим специальностям и направлениям подготовки в университетах.

5

Раздел 1. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ ОПТИЧЕСКОГО ДИАПАЗОНА. ПОЛЯРИЗАЦИЯ КОЛЕБАНИЙ

1.1. Уравнения и параметры электромагнитных волн

- 1.1. Определить фазовую скорость распространения света в среде с показателем преломления n = 1,5.
- 1.2. Определить на какую величину Δv изменяется фазовая скорость распространения света при его преломлении на границе стекло (n₁ = 1,5) и вода (n₂ = 1,33).
- Определить фазовую скорость распространения света в среде с относительной диэлектрической проницаемостью ε = 3,8 и магнитной проницаемостью μ = 1.
- 1.4. Показать, что уравнение плоской волны $E(z, t) = E_0 \cos(\omega t kz)$ является решением волнового уравнения и выразить фазовую скорость волны v через параметры волны круговую частоту ω и волновое число k.
- 1.5. Уравнение плоской гармонической волны в некоторой среде имеет вид $E(z,t) = 5 \cdot \cos\left(2\pi \cdot 5 \cdot 10^{14} \cdot t - \frac{2\pi}{0,4 \cdot 10^{-6}} \cdot z\right)$. Определить фазовую скорость волны v и

показатель преломления среды п.

- 1.6. Используя комплексную форму записи для уравнения плоской гармонической волны, распространяющейся вдоль оси z, показать, что это уравнение удовлетворяет волновому уравнению.
- Определить разность фаз колебаний Δφ₁₂, возбуждаемых плоской волной с длиной волны λ, распространяющейся вдоль оси z, в точках с координатами z₁ и z₂.

- 1.9. Определить изменение фазы $\Delta \phi$ волны с частотой v при ее распространении на расстояние Δz в среде с показателем преломления n.
- 1.10.Плоская волна с длиной волны в вакууме $\lambda_0 = 600$ нм нормально падает на плоскопараллельную пластину толщиной d = 2 мм и показателем преломления n = 1,75. Определить разность фаз колебаний ∆ф на задней и передней поверхностях JephbilleB пластины.

1.11.Плоская волна с длиной волны λ падает под углом α к оси х на плоскость х, у перпендикулярно оси у. Записать уравнение для пространственного распределения фазы волны $\phi(x)$ вдоль оси x, если фаза волны в начале координат $\phi(x = 0) = \pi/2$.

1.12. Плоская волна с длиной волны λ_0 падает под углом α_0 на поверхность раздела двух диэлектриков с показателями преломления n₁ и n₂. Получить выражение для пространственного распределения фазы падающей и преломленной волн в зависимости от координаты х на границе раздела сред, если плоскость падения совпадает с плоскостью x,z.

- $\Delta \phi_{12}$, возбуждаемых 1.13.Определить фаз колебаний плоской разность монохроматической волной с длиной волны λ в точках $P_1(x_1, y_1)$ и $P_2(x_2, y_2)$ в плоскости х, у, на которую падает волна под углами α и β с осями х и у.
- 1.14. Плоская монохроматическая волна распространяется в плоскости x, z в направлении, составляющем угол $\alpha = 30^{\circ}$ с осью z. Определить фазовую скорость волны в направлении оси х при показателе преломления среды n = 1,5.
- 1.15. Сферическая волна от точечного источника S, расположенного на оси z в точке z₀ падает на плоскость х, у. Используя параксиальное (параболическое) приближение записать выражение для пространственного распределения фазы волны $\phi(x, y)$ в плоскости x, y, если начальная фаза волны в точке z_0 равна $\phi(0,0,z_0) = \pi$.

1.16.Сходящаяся сферическая волна падает на плоскость x, y и фокусируется в точку S', расположенную на оси z с координатами (0,0, z₀). Используя параксиальное (параболическое) приближение записать уравнение для пространственного распределения фазы волны $\phi(x, y)$ в плоскости x, y, если фаза волны в начале координат $\phi(0,0) = \pi$. Japatoschulu

9

1.17. Плоская волна падает на собирающую линзу параллельно ее оптической оси. Считая линзу тонкой (толщина линзы d - мала, радиусы кривизны сферических поверхностей линзы ${\bf R}_1$ и ${\bf R}_2$ большие, координаты падающего на линзу луча x, y приближенно равны координатам х',у' вышедшего из линзы луча), получить в параксиальном приближении уравнение для пространственного распределения фазы волны $\phi(x',y')$ в плоскости x',y', расположенной непосредственно за линзой, и получить выражения для оптической силы Ф и фокусного расстояния f тонкой линзы в зависимости от R_1, R_2 и показателя преломления линзы n.

длиной волны λ 1.18. Плоская волна распространяется В с направлении $\vec{N}(\cos\alpha,\cos\beta,\cos\gamma)$, имеющим углы α,β,γ с осями прямоугольной системы координат x, y, z, соответственно. Определить пространственные периоды волны $\Lambda_x, \Lambda_y, \Lambda_z$ и пространственные частоты f_x, f_y, f_z вдоль осей x, y, z, соответственно. CapatoBCKNM FOCULIA

1.2. Спектральные свойства электромагнитных волн

- 1.19. Спектральный контур квазимонохроматического света имеет полуширину Δλ ≈ 0,1 мкм на центральной длине волны λ₀ ≈ 600 нм. Определить время когерентности τ_c и длину временной когерентности l_c такого света.
- 1.20. Определить длину волнового цуга и время когерентности электромагнитной волны в среде с показателем преломления n = 1,7, если центральная частота ν₀ ≈ 5 · 10⁻¹⁴ Гц, а полуширина частотного контура этой волны составляет Δν ≈ 10⁻¹³ Гц.
- Определить среднее число осцилляций в отдельном волновом цуге оптического поля со средней длиной волны λ₀ ≈ 0,6 мкм и шириной спектрального контура Δλ ≈ 100 нм.
- 1.22. Через оптический фильтр пропускают белый свет. Ширина спектрального контура белого света Δλ ≈ 150 нм, центральная длина волны λ₀ ≈ 0,55 мкм. Центральная длина волны пропускания фильтра λ_φ ≈ 0,6 мкм, а ширина полосы пропускания Δλ_φ ≈ 15 нм. Определить, во сколько раз изменится длина когерентности (длина волнового цуга) света при прохождении через такой фильтр.
- 1.23. Длина когерентности квазимонохроматического света
 $l_{\rm c}\approx 30$ мкм с длиной волны $\lambda_{0}\approx 630$ нм. Определить ширину спектрального контура
 $\Delta\lambda$ и $\Delta\nu$ этого света.
- 1.24. Спектральный контур квазимонохроматического света описывается функцией Гаусса $I(\lambda) = I_0 \exp[-(\lambda 0.6)^2/10^{-4}]$. Определить длину временной когерентности I_c этого света.

1.3. Поляризация электромагнитных волн

1.25.Показать, что при сложении двух плоских линейно поляризованных волн с ортогональными направлениями колебаний, с одинаковыми частотами и произвольной разностью фаз Δφ_{xy} результирующая волна имеет эллиптическую поляризацию.

- Определить эксцентриситет эллипса поляризации электромагнитной волны, полученной при сложении двух ортогональных линейно поляризованных волн с амплитудами E_{ox} и E_{oy} и разностью фаз Δφ_{xy}.
- 1.27.Показать, что линейно поляризованную волну можно представить в виде суперпозиции двух циркулярно поляризованных волн с противоположными направлениями вращения вектора электрического поля.
- 1.28. При каких значениях разности фаз Δφ_{xy} и амплитуд E_{ox} и E_{oy} ортогонально линейно поляризованных волн результирующая волна имеет: а линейную; б циркулярную поляризацию?
- 1.29. Определить состояние поляризации электромагнитных колебаний, образующихся при наложении двух линейно поляризованных монохроматических колебаний $E_x(z,t) = E_{0x} \cos(\omega_{0x}t + \phi_{0x})$ и $E_y(z,t) = E_{0y} \cos(\omega_{0y}t + \phi_{0y})$ с ортогональными направлениями колебаний и разными частотами ω_{0x} и ω_{0y} .
- 1.30. Две плоские монохроматические волны с одинаковыми длинами волн λ = 600 нм линейно поляризованные в ортогональных направлениях падают на плоскость x, y под разными углами оси x, α₀₁ = 0, α₀₂ = 30°. Определить пространственный период изменения вдоль оси x состояния поляризации результирующих суммарных колебаний, возбуждаемых этими волнами.

1.31. Определить состояние поляризации плоской электромагнитной волны, образующейся линейно поляризованных при наложении двух плоских волн $E_{x}(z,t) = E_{0x} \cos(\omega_{0}t - kz + \varphi_{0x}(t))$ и $E_{v}(z,t) = E_{0v} \cos(\omega_{0}t - kz + \phi_{0v}(t))$ с ортогональными направлениями колебаний и начальными фазами $\phi_{0x}(t)$ и $\phi_{0y}(t)$, HalleBCKOTC случайно изменяющимися во времени.

1.4. Энергия, мощность, интенсивность света

- 1.32. Напряженность электрического поля плоской электромагнитной волны Е изменяется по закону $E(z,t) = 20 \cdot \cos \left(2\pi \cdot 3 \cdot 10^{14} \cdot t - \frac{2\pi}{5 \cdot 10^{-6}} \cdot z \right) [B/M]$. Определить частоту, длину волны, скорость волны. Записать в явном виде выражение для модуля вектора Умова-Пойтинга \vec{S} и вычислить значение интенсивности I [BT/м²] этой волны.
- 1.33. Мощность лазерного пучка света Р = 2 мВт. Распределение интенсивности света в сечении пучка определяется поперечном функцией некотором Гаусса $I(x, y) = I_0 \exp(-(x^2 + y^2)/w^2)$. Определить интенсивность I_0 и амплитуду $E_0[B/M]$ напряженности электрического поля в центре пучка, если радиус пучка w = 1 мм.
- 1.34. Амплитуда напряженности электрического поля лазерного пучка света составляет E₀ = 12 В/м. Определить интенсивность этого пучка света I [Вт/м2] и его мощность Р [Вт], если считать этот пучок параллельным с диаметром поперечного сечения D = 5 мм и равномерным распределением интенсивности.
- 1.35.Изменение амплитуды напряженности электрического поля E(x, y) в поперечном сечении х, у лазерного пучка определяется функцией Гаусса $E(x, y) = E_0 \exp[-(x^2 + y^2)/w_0^2].$ Записать выражение для распределения интенсивности I(x, y) в поперечном сечении лазерного пучка и вычислить мощность пучка P, если $E_0 = 5 \text{ B/m}$, а радиус пучка по амплитудному распределению $W_0 = 3 MM$.

1.5. Стоячие электромагнитные волны

- 1.36. Определить расстояние между соседними пучностями и узлами стоячей оптической волны, образованной в среде с показателем преломления n = 1,33 при наложении встречных волн с длиной волны $\lambda_0 = 0.6$ мкм.
- 1.37. Определить пространственный период расположения полос почернения в плоскости фотопластинки в опыте Винера по фоторегистрации стоячих электромагнитных волн, если в опыте используется свет с длиной волны 550 нм, а фоточувствительный слой PP расположен под углом $\alpha = 1^{\circ}$ к плоскости металлического зеркала M.

1.38. Определить количество пучностей стоячей волны и, соответственно, количество слоев почернения, образующихся в фоточувствительном слое с показателем преломления n = 1,35 толщиной h = 8 мкм, расположенном перпендикулярно направлениям распространения двух встречных плоских монохроматических волн с частотой 1,8 · 10⁸ МГц. CapatoBCHMM FOCULTAR

Раздел 2. ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ СВЕТА

2.1. Формулы Френеля

- 2.1. Используя формулы Френеля построить графики зависимости коэффициентов отражения от границы раздела двух сред диэлектриков линейно поляризованного света с колебаниями в плоскости падения $\rho^{P}(\alpha_{0})$ и перпендикулярно плоскости падения $\rho^{S}(\alpha_{0})$ от угла падения α_{0} при показателях преломления сред $n_{1} = 1,0$ и $n_{2} = 1,5$.
- 2.2. На плоскую границу раздела двух диэлектриков с показателями преломления n₁ = 1,0 и n₂ = 1,5 падает параллельный пучок естественного (случайно поляризованного) света. Определить угол падения α₀, при котором отраженный пучок становится линейно поляризованным. Указать направление колебаний электрического поля в отраженном пучке света.
- 2.3. Определить условия, при которых эллиптически поляризованная волна при отражении от диэлектрика может быть циркулярно поляризованной.
- 2.4. Определить азимут поляризации отраженного пучка θ_1 при азимуте поляризации падающего линейно поляризованного света $\theta_0 = 45^0$, если показатели преломления сред равны $n_1 = 1$, $n_2 = 1,5$.
- 2.5. Определить азимут поляризации преломленной волны θ_2 при азимуте поляризации падающего линейно поляризованного света $\theta_0 = 45^0$, если $n_1 = 1,3$, $n_2 = 1,65$.
- 2.6. Определить азимут поляризации отраженной θ_1 и преломленной θ_2 волн, если падающая волна линейно поляризована с азимутом $\theta_0 = 60^0$ и падает под углом Брюстера $\alpha_0 = \alpha_B$, $n_1 = 1,3$, $n_2 = 1,7$.
- 2.7. Определить эксцентриситет эллипса поляризации отраженного луча света ε_1 , если падающий луч циркулярно поляризован, угол падения $\alpha_0 = 30^0$, $n_1 = 1$, $n_2 = 1,5$.

2.2. Энергетические коэффициенты отражения и пропускания

- 2.8. Используя формулы Френеля, получить выражения (в зависимости от угла падения α_0 и коэффициентов преломления сред n_1 и n_2) для энергетических коэффициентов отражения и пропускания света, линейно поляризованного: а в плоскости падения R^P и T^P ; б перпендикулярно плоскости падения R^S и T^S . Построить графики зависимости коэффициентов отражения и пропускания от угла падения при заданных коэффициентах преломления $n_1 = 1,0$ и $n_2 = 1,5$.
- 2.9. Используя формулы Френеля, получить выражения для энергетических коэффициентов отражения и пропускания света: а линейно поляризованного с произвольным азимутом поляризации θ_0 R(θ_0) и T(θ_0); б циркулярно поляризованного; в естественного (случайно поляризованного). Построить графики зависимости коэффициентов отражения и пропускания от угла падения при заданных коэффициентах преломления $n_1 = 1,0$ и $n_2 = 1,5$.
- 2.10. На основе формул для энергетических коэффициентов отражения и пропускания линейно поляризованного света, полученных с использованием формул Френеля, показать справедливость закона сохранения энергии при отражении света от границы раздела двух диэлектриков.
- 2.11. Определить энергетические значения коэффициентов отражения R и пропускания T естественного света, падающего под углом Брюстера на границу раздела воздух-стекло (n₁ = 1,0, n₂ = 1,5).
- 2.12. Определить амплитудный и энергетический коэффициенты отражения линейно поляризованного света с азимутом поляризации $\theta_0 = 45^\circ$, падающего под углом $\alpha_0 = 70^\circ$ на границу раздела сред с показателями преломления $n_1 = 1,3$, $n_2 = 1,8$.
- 2.13. Определить энергетический коэффициент T пропускания плоскопараллельной стеклянной пластины $n_2 = 1,5$ в воздухе $n_1 = n_3 = 1,0$ при падении естественного света на пластину под углом $\alpha_0 = 45^\circ$.

- 2.14. Определить условия, при которых линейно поляризованный лазерный пучок проходит через плоскопараллельную стеклянную пластину с показателем преломления n₂ = 1,5 практически без потерь мощности на отражение от граней пластины.
- 2.15. Определить энергетический коэффициент T пропускания плоскопараллельной стеклянной пластины $n_2 = 1,5$ в воздухе $n_1 = n_3 = 1,0$ при падении линейно поляризованного света с азимутом поляризации $\theta_0 = 30^\circ$ под углом Брюстера.

2.16. Определить потери мощности лазерного пучка ΔР при прохождении его через поворотную прямоугольную равнобедренную призму с показателем преломления n₂ = 1,5 при нормальном падении на катетную грань. Мощность падающего лазерного пучка P₀ = 5 мВт.

2.17. На призму с показателем преломления $n_2 = 1,5$ и углом при вершине $\gamma = 30^\circ$ падает линейно поляризованный лазерный пучок с азимутом поляризации $\theta_0 = 45^\circ$. Определить интенсивность пучка I на выходе из призмы, если интенсивность падающего пучка равна $I_0 = 2 \,\mathrm{MBt/Mm2}$, а угол падения на первую грань призмы $\alpha_0 = 30^\circ$.

- 2.18. Решить предыдущую задачу при условии, что падающий лазерный пучок имеет циркулярную поляризацию.
- 2.19. Определить энергетический коэффициент Т пропускания трехлинзового объектива фотоаппарата, если на поверхностях линз не нанесено просветляющее покрытие. Показатели преломления линз и окружающей среды: n₁ = n₃ = n₅ = n₇ = 1, n₂ = 1.5, n₄ = 1.75, n₆ = 1.65. Падение лучей света на поверхности линз считать нормальным.

2.2. Полное внутреннее отражение

- 2.20. Параллельный пучок света падает из оптически более плотной диэлектрической среды на плоскую границу раздела с менее плотной диэлектрической средой. Найти предельный угол падения α_{пр} пучка, при котором наступает полное внутреннее отражение, если скорость распространения света в первой среде в 1.5 раза меньше скорости распространения света во второй среде.
- 2.21. Используя формулы Френеля построить графики зависимости коэффициентов отражения от границы раздела двух сред-диэлектриков линейно поляризованного света с колебаниями в плоскости падения ρ^P(α₀) и перпендикулярно плоскости падения ρ^S(α₀) от угла падения α₀ при показателях преломления n₁ = 1,5 и n₂ = 1,0 в диапазоне значений угла падения 0 ≤ α₀ ≤ α_{np}, где α_{np} предельный угол полного внутреннего отражения.

2.22. Определить значение числовой апертуры NA оптического волокна с показателем преломления световедущей сердцевины n₁ = 1,7 и показателем преломления оболочки $n_2 = 1.6$. Числовая апертура определяется выражением NA = $n_0 \sin \alpha_{max}$, где n₀ - показатель преломления среды, из которой падает луч света, α_{max} максимальный угол падения луча на торец волокна, при котором свет в сердцевине 101116BC испытывает полное внутреннее отражение.

- 2.23. Определить величины фазовых сдвигов р-и s-компонент волны, отраженной от границы раздела двух диэлектриков, если угол падения $\alpha_0 = 60^0$, $n_1 = 1,5$, $n_2 = 1$.
- 2.24. Получить выражение для разности фаз р и s-компонент отраженной волны при полном внутреннем отражении в зависимости от угла падения α_0 и показателей преломления сред n₁ и n₂.
- 2.25. Построить график зависимости разности фаз б для р и s компонент от угла падения α_0 , $\delta = f(\alpha_0)$ в диапазоне углов падения $\alpha_0 = 40^0 \div 90^0$ при $n_1 = 1,6$, $n_2 = 1$.
- 2.26. Определить разность фаз p и s компонент в лазерном пучке, отраженном гипотенузной гранью прямоугольной призмы при угле падения $\alpha_0 = 45^{\circ}$, $n_1 = 1,5$, = 1. Падающий лазерный пучок – линейно поляризован. , 2PatoBCHIN

2.27. Получить выражение для угла падения α₀, при котором разность фаз р и s-компонент отраженной волны при полном внутреннем отражении принимает максимальное значение.

- 2.28. Определить максимальное значение разности фаз p и s компонент и соответствующий угол падения α₀ при отражении от границы раздела диэлектриков с n₁ = 1,7 , n₂ = 1,0.
- 2.29. Определить эксцентриситет и ориентацию осей эллипса поляризации отраженного луча света относительно плоскости падения при угле падения $\alpha_0 = 60^{\circ}$ линейно поляризованного света с азимутом поляризации $\theta_0 = 40^{\circ}$ на границе раздела диэлектриков с $n_1 = 1,5$, $n_2 = 1,0$.
- 2.30. Построить график зависимости амплитуды преломленной волны от расстояния z от границы двух диэлектриков с $n_1 = 1,5$, $n_2 = 1,0$ при полном внутреннем отражении света с $\lambda_0 = 550$ нм и определить угол падения α_0 , при котором амплитуда волны падает в e раз на расстоянии $z = \lambda_0/2$.

2.31. Определить глубину проникновения *l* во вторую среду преломленной волны при полном внутреннем отражении на границе с n₁ = 1,65, n₂ = 1,0 при угле падения α₀ = 60⁰, λ₀ = 630 нм (глубина проникновения *l* определяется как расстояние, на котором амплитуда волны уменьшается в *e* – раз).

Раздел 3. ОПТИКА АНИЗОТРОПНЫХ СРЕД. КРИСТАЛЛООПТИКА

3.1. Преломление света на границе с анизотропной средой

3.1. Определить фазовые скорости колебаний обыкновенной волны v_0 и необыкновенной волны v_e , распространяющихся в одноосной анизотропной среде под углом $\theta = 30^0$ к оптической оси, если главные значения диэлектрической проницаемости среды $\varepsilon_{\perp} = 2,749$, $\varepsilon_{\parallel} = 2,208$.

3.2. Определить значения фазовых скоростей распространений обыкновенной v₀ и необыкновенной v_e волн в некотором направлении в плоскости сечения кристалла кварца, перпендикулярном оптической оси, если известно, что главные значения диэлектрической проницаемости кварца для этой длины волны равны ε_⊥ ≈ 2,384, ε_∥ ≈ 2,412.

3.3. На границу раздела воздух - кристалл исландского шпата ($n_o = 1,658$, $n_e = 1,486$) нормально падает линейно поляризованная плоская волна света с диной волны $\lambda_0 = 550$ нм и азимутом поляризации $\alpha = 45^\circ$. Оптическая ось кристалла составляет угол $\theta = 45^\circ$ с нормалью к поверхности кристалла. Толщина пластины кристалла d = 5 мм. Определить разность фаз колебаний обыкновенной и необыкновенной волн на выходе из пластины кварца.

3.4. На границу раздела двух сред воздух – кварц падает плоская волна естественного света (со случайной поляризацией) под углом $\alpha_0 = 45^\circ$. Оптическая ось кристалла кварца перпендикулярна плоскости падения волны. Определить угол Δα, между направлениями распространения обыкновенной и необыкновенной волн в кристалле, если скорости их распространения, соответственно, равны $v_{20} = 1,943 \cdot 10^8 \text{ м/с},$ $v_{2e} = 1,932 \cdot 10^8$ м/с, а показатель преломления воздуха $n_1 = 1,001$.

3.5. На грань плоскопараллельной пластины исландского шпата ($n_0 = 1,658, n_e = 1,486$) в воздухе (n₁ ≈ 1,0) падает параллельный пучок естественного света (со случайной поляризацией) с диаметром апертуры D = 4 мм под углом $\alpha_0 = 45^0$. Оптическая ось кристалла O-O' перпендикулярна плоскости падения. Определить толщину d пластины исландского шпата с плоскопараллельными границами, необходимую для того, чтобы обыкновенный и необыкновенный пучки на выходе из пластины не накладывались бы друг на друга.

CapatoBCKNM FOCYHA 3.6. Если в предыдущей задаче пучки обыкновенной и необыкновенной волн пересекаются, то какое состояние поляризации имеет суммарная волны в области пересечения пучков?

3.2. Поляроиды и фазовые пластины

3.7. Определить интенсивность пучка света I₂, прошедшего через два поляроида, оси пропускания которых составляют между собой угол α = 30°. Интенсивность падающего естественного света I_i = 1 мВт/мм². (Отражением от граней поляроидов пренебречь).

- 3.8. Определить интенсивность пучка света I₂, прошедшего через два поляроида, оси пропускания которых составляют между собой угол α = 45°. Падающий свет циркулярно поляризован с интенсивностью I₁ = 100 мBT/см². (Отражением от граней поляроидов пренебречь).
- 3.9. Определить интенсивность пучка света I₂, прошедшего через два поляроида, оси пропускания которых составляют между собой угол α = 60[°]. Падающий свет с интенсивностью I_i = 2 мВт/мм² линейно поляризован с направлением колебаний (азимутом колебаний), составляющим угол θ = 30[°] с осью пропускания первого поляроида. (Отражением от граней поляроидов пренебречь).
- 3.10. Определить разность фаз колебаний $\Delta \phi_{oe}$ в обыкновенной и необыкновенной волнах на выходе из плоскопараллельной пластины исландского шпата (n_o = 1,658, n_e = 1,486) толщиной d = 150 нм, если оптическая ось пластины параллельна ее граням, а линейно поляризованная оптическая волна с $\lambda_0 = 0,63$ мкм падает нормально на входную грань пластины.

3.11. На кристаллическую одноосную пластину толщиной d = 6,9 мкм с главными значениями показателей преломления $n_0 = 1,56$ и $n_e = 1,6$ нормально падает линейно поляризованная волна с длиной волны $\lambda_0 = 0,55$ мкм и с направлением колебаний электрического вектора \vec{E}_i , составляющим $\theta = 30^\circ$ с оптической осью пластины, параллельной ее входной грани. Определить состояние и параметры поляризации JephbilleB(волны вышедшей из пластины.

- 3.12. На кристаллическую пластинку, вырезанную параллельно оптической оси, нормально падает плоская линейно поляризованная волна с азимутом поляризации $\alpha = 30^{\circ}$. Толщина пластинки d такова, что разность фаз, возникающая между обыкновенной и необыкновенной волнами, на выходе из пластинки равна $\Delta \phi = (2m+1)\pi$, где m – целое число. Определить состояние и параметры поляризации колебаний в вышедшей из пластинки волны.
- 3.13. На кристаллическую фазовую пластину ($n_0 = 1,623$ и $n_e = 1,656$) с оптической осью, параллельной граням пластины, и толщиной d = 45 мкм нормально падает циркулярно поляризованный параллельный пучок света с $\lambda_0 = 0,6$ мкм. Определить состояние поляризации пучка света, вышедшего из пластины.
- 3.14. На плоскопараллельную кристаллическую пластину исландского шпата (n_o = 1,658, n_e = 1,486) с оптической осью, параллельной граням пластины, и толщиной d = 250 мкм нормально падает линейно поляризованный пучок света с центральной длиной волны $\lambda_0 = 0.55$ мкм и шириной спектрального контура $\Delta \lambda \approx 0.01$ мкм. Определить состояние поляризации пучка света на выходе из пластины.

3.3. Интерференция поляризованного света

3.15. Определить интенсивность пучка света I2, прошедшего через два поляроида и кристаллическую фазовую пластину между ними. Падающий свет естественный (хаотически поляризован) с длиной волны $\lambda_0 = 0,6$ мкм и интенсивностью $I_i = 5 \text{ мBt}/\text{мm}^2$. Толщина пластины d = 0,1 мm, главные значения показателей преломления n_o = 1,62 и n_e = 1,65. Оптическая ось пластины составляет угол $\alpha_1 = 35^\circ$ с осью пропускания первого поляроида и угол $\alpha_2 = -58^\circ$ с осью пропускания второго поляроида.

3.16. На одноосную кристаллическую пластину толщиной d = 0,5 мм с главными значениями показателей преломления n_o = 1,71 и n_e = 1,68 падает циркулярно поляризованная волна с длиной волны $\lambda_0 = 630$ нм. За пластиной располагается поляроид, ось пропускания которого составляет угол $\alpha = 30^{\circ}$ с осью пропускания пластины. Определить интенсивность света I2, прошедшего через пластину и поляроид, если интенсивность циркулярно поляризованной волны $\,I_i^{}=1\,\,\text{MBt}/\,\text{mm}^2$. JH) CapatoBckMN 10C

3.17. Естественный свет интенсивностью І_і проходит через систему, состоящую из поляризатора Р и четвертьволновой пластинки. Затем свет отражается от зеркала М и проходит через пластинку и поляризатор в обратном направлении. Определите интенсивность I₂ на выходе этой системы как функцию угла α между осью пропускания поляризатора и оптической осью пластинки О-О'. Определить 1eoHphilleBC максимальное и минимальное значения интенсивности I₂.

3.18. Белый естественный свет пропускают через систему поляроид 1 – фазовая пластинка – поляроид 2. Определить длину волны λ и цвет волны, для которой на выходе из поляроида 2 будет наблюдаться максимум интерференции. Поляроиды скрещены, оптическая ось пластины составляет угол $\alpha = 45^{\circ}$ с осями поляризаторов, толщина пластины d = 8 мкм, главные значения показателей преломления $n_0 = 1,61$, $n_e = 1,65$ практически не зависят от длины волны.

3.19. Естественный белый свет пропускают через систему поляроид Р1 – фазовая пластинка – поляроид Р2. В спектральном контуре прошедшего света появляется локальный минимум (провал) на длине волны $\lambda_1 = 0,57$ мкм. Определить разность главных значений показателей преломления пластины $\Delta n = n_o - n_e$ толщину пластины d , если $n_{_{0}}$ = 1,57 , $n_{_{e}}$ = 1,61 , a ее оптическая ось составляет угол α = 45 $^{\rm o}$ c осями пропускания скрещенных поляризаторов.

3.20. Естественный свет проходит через систему из двух поляризаторов P1 и P2, между которыми помещена кристаллическая пластинка в полволны. Главные плоскости поляризаторов составляют с главной плоскостью пластинки углы α_1 и α_2 . Определить отношение интенсивностей света на выходе и входе в эту систему. HalleBCKOTC Рассчитайте при $\alpha_1 = 45^{\circ}$ и $\alpha_2 = 30^{\circ}$.

3.4. Поляризационные призмы

3.21. Призма Волластона сделана из исландского шпата ($n_0 = 1,658$, $n_e = 1,486$) с углом $\alpha = 20^{\circ}$ между катетной и гипотенузной гранями призмы. Определить угол β между линейно поляризованными пучками света на выходе призмы, если на призму нормально падает пучок естественного света.

- 3.22. На призму Волластона падает линейно поляризованный пучок света с направлением колебаний, составляющим угол $\theta = 30^{\circ}$ с оптической осью первой половины призмы. Определить отношение интенсивностей пучков света I_o/I_e , вышедших из призмы.
- 3.23. На призму Волластона падает циркулярно поляризованный пучок света. Определить отношение интенсивностей пучков света I₀/I_e, вышедших из призмы.

3.24. Определить угол β между ортогонально поляризованными лучами света на выходе призмы Рошона, сделанной из исландского шпата ($n_0 = 1,658$, $n_e = 1,486$) с углом $\alpha = 20^{\circ}$ между катетной и гипотенузной гранями призмы. Определить отношение интенсивностей этих лучей I_o/I_e с учетом потерь при отражении лучей на границах раздела сред, если падающий на призму луч: (a) естественный (хаотически поляризован); (б) поляризован по кругу; (в) линейно поляризован с азимутом поляризации $\theta = 30^\circ$. Jeohph

3.25. Определить отношение интенсивностей ортогонально поляризованных лучей, вышедших из призмы Сенармона, сделанной из исландского шпата (n_o = 1,658, $n_{a} = 1,486$) с углом $\alpha = 25^{\circ}$ между катетной и гипотенузной гранями призмы, если падающий луч линейно поляризован с азимутом поляризации $\theta = 60^\circ$. Отражением лучей на границах раздела сред можно пренебречь.

3.26. Пучок естественного света с интенсивностью І, проходит через поляроид Р, а затем через призму Волластона. Поляроид вращается в собственной плоскости с частотой Ω . Получить уравнения для изменения во времени t интенсивностей обыкновенной $I_{0}(t)$ и необыкновенной $I_{e}(t)$ волн на выходе из призмы.

3.27. Пучок линейно поляризованного света с интенсивностью І_і и с длиной волны λ_0 проходит через полуволновую фазовую пластину, а затем через призму Волластона. Пластина вращается в собственной плоскости с частотой Ω. Получить уравнения для изменения во времени t интенсивностей обыкновенной $I_{o}(t)$ и необыкновенной A LephbilleBCKOTO I_e(t) волн на выходе из призмы.

- 3.28. Пучок линейно поляризованного света с интенсивностью І_і проходит через четвертьволновую фазовую пластину, а затем через призму Волластона. Пластина вращается в собственной плоскости с частотой Ω. Получить уравнения для изменения во времени t интенсивностей обыкновенной I₀(t) и необыкновенной

3.5. Индуцированная анизотропия оптических свойств. Оптическая активность

3.29. В стеклянной пластинке толщиной d = 4 мм имеется однородное механическое напряжение $\sigma_y = 25$ МПа вдоль одного направления у. Пластину помещают между скрещенными поляроидами Р1 и Р2 так, чтобы ось у составляла угол $\alpha = 45^{\circ}$ с осями пропускания поляроидов. Используя закон фотоупругости Брюстера, определить разность хода Δ_{oe} обыкновенной и необыкновенной волн в пластине и длину волны λ_m, для которой наблюдается интерференционный максимум в видимом диапазоне белого света. Постоянная Брюстера $C_B = 2,5 \times 10^{-12} \text{ Im} a^{-1}$.

Керра с нитробензолом, помещенную 3.30. Ha ячейку между скрещенными поляризаторами, подается электрическое напряжение U. Расстояние между пластинами конденсатора ячейки d = 1 мм, длина конденсатора 1 = 5 см, постоянная Керра равна $K = 5 \cdot 10^{-18} \text{ м2/B2}$. Оси пропускания поляризатора Р составляют угол α = 45° с пластинам конденсатора. Определить напряжение, при котором интенсивность света на выходе системы принимает максимальное значений. JapatoBckM

- 3.31. На ячейку Керра, помещенную между скрещенными поляризаторами, подается переменное напряжение $U = U_0 \sin(2\pi ft)$. Постройте график интенсивности прошедшего через систему света с длиной волны $\lambda = 600$ нм, если $U_0 = 2,5$ кВ, расстояние между пластинами конденсатора d = 1 мм, длина конденсатора 1 = 50 мм. Постоянная Керра равна $K = 5 \cdot 10^{-18} \text{ м}^2 / \text{B}^2$. Ориентация осей пропускания поляризаторов составляет угол $\alpha = 45^\circ$ с пластинами конденсатора.
- 3.32. Решите предыдущую задачу для параллельной ориентации осей пропускания and and and a second in the second is a second i поляризатора и анализатора и угла 45° между направлением пропускания

Раздел 4. ИНТЕРФЕРЕНЦИЯ СВЕТА

4.1. Интерференция монохроматического и взаимно когерентного света

- 4.1. Определить значение интенсивности света в некоторой точке Р интерференционной картины, образующейся при наложении двух взаимно когерентных волн, если известно, что интенсивности этих волн равны $I_1 = 4 \text{ Br}/\text{m}^2$, $I_2 = 1 \text{ Br}/\text{m}^2$, а разность фаз волн в точке Р равна $\Delta \phi_{12} = 62,8$ рад.
- 4.2. При отражении монохроматического света с λ = 0,6мкм от тонкой пленки масла на поверхности жидкости возникает оптическая разность хода Δ = 3,3 мкм между двумя волнами, отраженными от верхней и нижней поверхностей пленки. Определить, светлая или темная полоса наблюдается в данном месте пленки?

4.3. Свет длиной волны λ₀ = 650 нм падает на тонкую мыльную пленку под углом падения α₀ = 20°. В отраженном свете на поверхности пленки наблюдаются интерференционные полосы с периодом Λ = 5 мм. Показатель преломления мыльной пленки n =1,33. Вычислить угол β между поверхностями пленки.

Japaroschwin

4.4. Почему центр колец Ньютона, наблюдаемых в отраженном свете, темный, если кольца формируются в воздушном зазоре (клине) между соприкасающимися сферическими поверхностями стеклянных линз?

4.5. Найти расстояние Л между десятым и девятым темными кольцами Ньютона, если расстояние между вторым и третьим равно 2 мм, а кольца наблюдаются в отраженном свете в воздушном клине между выпуклой поверхностью линзы и плоской поверхностью стеклянной пластины. lephblueBckorc

4.6. Кольца Ньютона формируются в зазоре между двумя выпуклыми сферическими поверхностями стеклянных линз L1 и L2. Вывести формулу для радиуса m-го темного кольца, r_m, если длина световой волны равна λ₀, радиусы кривизны поверхностей равны R₁ и R₂, а пространство между линзами заполнено жидкостью с показателем преломления $n_2 > n_1 = n_3$, где n_2 и n_3 - показатели преломления линз. Наблюдение ведется в отраженном свете.

4.7. Определить контраст интерференционных полос, образующихся при наложении двух линейно поляризованных оптических волн с интенсивностью $I_1 = 1 \text{ MBt}/\text{Mm}^2$ и $1_2 = 3 \text{ MBT/MM}^2$, если направления колебаний в этих волнах составляют угол $\theta = 30^{\circ}$.

4.8. Направления распространения двух плоских волн одной и той же длины λ составляют друг с другом угол θ . Волны падают на экран, плоскость которого перпендикулярна биссектрисе угла θ . Записав уравнения для плоских волн и сложив поля этих волн, показать, что расстояние Λ между двумя соседними интерференционными полосами (период полос) Λ на экране определяется выражением $\Lambda = \lambda/2\sin(\theta/2)$.

4.9. Две плоские линейно поляризованные волны с одинаковыми длинами волн λ₁ = λ₂ = 0,6 мкм распространяются навстречу друг другу. Определить период Λ интерференционных полос, образующихся в области пересечения этих волн, если показатель преломления среды в этой области равен n = 1,7.

4.10. На металлическое зеркало нормально падает и отражается пучок света с длиной волны λ = 6×10⁻⁴ мм и образуются стоячие волны в области наложения падающей и отраженной волн. На каком расстоянии от зеркала находятся первая пучность и первый узел электрического поля стоячей волны?

4.11. Две плоские линейно поляризованные монохроматические волны с одинаковыми частотами $\omega_1 = \omega_2$ распространяются под углом $\theta = 60^0$ друг к другу. Определить период Λ , контраст V интерференционных полос, наблюдаемых на экране, расположенном в области пересечения волн и перпендикулярном направлению распространения одной из волн, если амплитуды этих волн отличаются в два раза, а угол между направлениями колебаний $\alpha = 60^0$.

- 4.12. На фотопластинку падают две линейно поляризованные монохроматические волны с $\lambda_1 = \lambda_2 = 0,63$ мкм, распространяющиеся под углом $\theta = 45^0$ друг к другу. Определить разрешающую способность фотопластинки, необходимую для регистрации картины образующихся интерференционных полос, если пластинка установлена перпендикулярно направлению распространения одной из волн.
- 4.13. На металлическое зеркало М с нанесенным на него фоточувствительным прозрачным слоем (галоидосеребряный слой) с показателем преломления n = 1,52 и толщиной h = 10 мкм падает под углом α₀ = 45^o параллельный пучок света с длиной волны λ₀ = 0,63 мкм. Отраженная от зеркала волна интерферирует с падающей волной. В результате внутри светочувствительного слоя образуется система интерференционных полос (плоскостей) с периодом Λ. Определить период полос и их число внутри фоточувствительного слоя.

4.14. Определить период интерференционной картины в опыте с бипризмой. Показатель преломления призмы n, длина волны λ₀, преломляющий угол α.

4.15. Билинза Бийе изготовлена путем вырезания центральной части шириной Δl из целой сферической собирающей линзы с фокусным расстоянием f = 750 мм, как показано на рисунке. Обе половина линзы сдвинуты до соприкосновения. Если в передней фокальной плоскости линзы поместить точечный источник света S, то за линзой L можно наблюдать картину интерференции света. Найти величину Δl, если период интерференционных полос, наблюдаемых на экране за линзой равен Λ = 1 мм, а длина волны света λ = 0,55 мм.

4.16. Два точечных монохроматических источника света S₁ и S₂ располагаются на оси z на расстоянии $\Delta z = 1$ мм друг от друга и освещают экран, расположенный перпендикулярно оси z на расстоянии z₁ = 1 м от источника S₁. Записать уравнение для распределения интенсивности I(x, y) в интерференционной картине на экране в параксиальной области r = $\sqrt{x^2 + y^2} \ll z_1$ при условии, что интенсивности равны I₁ = I₂ = 10⁻² мВт/мм2, а длина волны $\lambda = 630$ нм. 4.17. Используя компьютерные программные средства, построить график зависимости I(r) и построить изображение интерференционной картины в градациях серого в диапазоне значений $|\mathbf{r}| \le \mathbf{R}$, в котором $I(\mathbf{r})$ испытывает не менее 10 периодов осцилляций.

4.18. Интерференционные полосы равного наклона в фокальной плоскости L получаются при отражении от плоскопараллельной стеклянной пластинки GP, освещаемой монохроматическим источником света S с помощью наклонной полупрозрачной пластины BS. Длина световой волны $\lambda_0 = 600$ нм, толщина пластинки h = 2 мм; показатель преломления n = 1,5; фокусное расстояние линзы f = 100 мм. Найти диаметр D первого видимого на экране Р темного интерференционного кольца, если центр колец – темный.

5aparoscum rocunapcinse 4.19. Показать, что при сложении двух монохроматических волн с одинаковой поляризацией, но разными длинами вол
н $\lambda_1 \neq \lambda_2$ интенсивность результирующей волны I изменяется во времени по гармоническому закону с частотой, равной разности частот Δv_{12} складываемых волн. Определить амплитуду ΔI колебаний интенсивности I(t), если интенсивности волн равны I_1 и I_2 .

- 4.20. Две плоские монохроматические волны с разными длинами волн $\lambda_1 = 630$ нм и $\lambda_2 = 632$ нм накладываются друг на друга под углом $\theta = 0,5^0$. Определить частоту колебаний интенсивности света f в одной точке экрана и скорость перемещения интерференционных полос, наблюдаемых на экране, установленном перпендикулярно биссектрисе угла θ .
- 4.21. В апертуру фотоэлектрического детектора (например, фотодиода) попадают и накладываются друг на друга две монохроматические волны с длинами волн $\lambda_1 = 0,633$ мкм и $\lambda_2 = 0,65$ мкм. Определить частоту срабатывания f_{ϕ} или постоянную времени $\tau_{\phi} = 1/f_{\phi}$ фотодиода, необходимые для наблюдения сигнала интерференции (биений) волн.

4.2. Интерферометры с делением по амплитуде. Интерферометр Майкельсона и интерферометр Маха-Цендера

4.22. Определить разность хода волн в интерферометре Майкельсона с геометрическими длинами плеч L₁ и L₂, если в одном плече расположена стеклянная пластина толщиной d с показателем преломления n.

4.23. В интерферометре Майкельсона зеркала установлены на одинаковых расстояниях L₁ = L₂ от делителя пучка света. В одно из плеч интерферометра устанавливается плоскопараллельная стеклянная пластина толщиной d и показателем преломления n. На какую величину ΔL необходимо сместить зеркало интерферометра, чтобы опять установить нулевую оптическую разность хода волн в плечах интерферометра.

- 4.24. Определить величину смещения ∆z зеркала интерферометра Майкельсона необходимую для пятикратного периодического изменения интенсивности света в интерференционной картине, наблюдаемой в выходном плече интерферометра.
- 4.25. В интерферометре Майкельсона используется плоская монохроматическая волна с длиной волны λ_0 . Плоскость одного из зеркал интерферометра составляет угол 90⁰, а другого $(90^{0} + \alpha)$ с направлением распространения освещающей волны. Определить период Λ интерференционных полос на выходе интерферометра.

4.26. В интерферометре Майкельсона используется точечный монохроматический источник света S с длиной волны λ_0 , расположенный на расстоянии L₀ от делителя BS. Зеркала интерферометра установлены на расстояниях L₁ и L₂ от делителя. Записать уравнение для разности фаз световых волн $\Delta \phi_{12}(x, y)$ на выходе интерферометра на экране с координатами x, y, установленном на расстоянии L от делителя. Использовать параксиальное приближение. JI. CapatoBckMM

- 4.27. В интерферометре Майкельсона одно зеркало движется с постоянной скоростью v вдоль оптической оси. Определить частоту f_S периодического изменения интенсивности света I(t) в интерференционной картине на выходе интерферометра, если длина волны света λ_0 .
- 4.28. Одно зеркало интерферометра Майкельсона совершает гармонические колебания вдоль оптической оси с амплитудой l = 1,5 мкм и частотой $f = 10^2 \Gamma \mu$. Построить график изменения во времени интенсивности света I(t) в интерференционной картине на выходе интерферометра при длине волны $\lambda_0 = 0,63$ мкм и интенсивностях интерферирующих волн $I_1 = I_2 = 0,5$ мВт/мм². Начальная разность фаз волн $\Delta \phi_0 = \pi/2$. График построить в интервале времени Δt , равном двум периодам колебаний зеркала.
- 4.29. Зеркало интерферометра Майкельсона совершает гармонические колебания с частотой f₀ и амплитудой l₀ вдоль оптической оси. Определить максимальную f_{max} и минимальную f_{min} частоты периодического изменения интенсивности света в интерференционной картине I(t) при длине волны света λ₀.
- 4.30. В интерферометре Маха-Цендера в одном плече установлена кювета толщиной L = 100 мм с жидкостью с показателем преломления n. В результате нагрева жидкости интерференционные полосы на выходе интерферометра сместились на 2,5 периода полос Λ. Определить величину изменения показателя преломления Δn, если длина волны λ₀ = 0,63 мкм.

4.3. Интерферометры с делением по волновому фронту. Интерферометр Юнга

4.31. В интерференционном опыте Юнга формируются полосы с периодом Λ = 0,6 мм на экране, удаленном на расстояние z = 60 см от экрана с точечными отверстиями, расстояние между которыми d = 0,55 мм. Определить длину волны света λ источника, использованного в данном опыте.

- 4.32. Найти длину волны λ монохроматического излучения, если в опыте Юнга расстояние пятого интерференционного максимума от центральной полосы x = 0,25 см. Данные установки: z = 5 м, d = 0,5 см.
- 4.33. Определить период интерференционных полос Юнга Λ, наблюдаемых в свете излучения полупроводникового лазера с λ = 650 нм на расстоянии z = 55 см от экрана с двумя тонкими щелями, расположенными на расстоянии d = 1 мм друг от друга
- 4.34. В интерферометре Юнга с двумя щелями Р1 и Р2 в непрозрачном экране точечный источник света S с $\lambda_0 = 0,55$ мкм расположен на расстоянии $z_0 = 1$ м от экрана и на расстоянии $x_0 = 1$ мм от оптической оси, проходящей через середину отрезка d = 2 мм между щелями. Найти положения x_m центров светлых полос нулевого и третьего порядков, $m = 0;\pm 3$, в интерференционной картине, наблюдаемой на экране, расположенном на расстоянии z = 2 м от экрана с отверстиями.

4.35. В свете двух взаимно когерентных источников S_1 и S_2 возникает система интерференционных полос на экране Р, удаленном от плоскости расположения источников на расстояние z = 2,5 м. Во сколько раз изменится ширина (период) интерференционных полос, если между источниками и экраном Р поместить собирающую линзу L с фокусным расстоянием f = 50 см таким образом, чтобы ,PHbIlleBC источники находились в передней фокальной плоскости линзы.

4.4. Интерференция частично когерентного света 🗸

- 4.36. Показать, что если разность фаз двух складываемых колебаний Δφ₁₂ беспорядочно меняется во времени, то интенсивность результирующего колебания I равна сумме интенсивностей исходных колебаний I1 + I2 и интерференция колебаний в этом случае не наблюдается. Считать, что за время наблюдения все значение разности фаз Δφ₁₂ равновероятны.
- 4.37. Определить максимальное число интерференционных полос, наблюдаемых вблизи ребра оптического клина в немонохроматическом свете, занимающем спектральный интервал $\Delta \lambda = 0,05$ мкм со средней длиной волны $\lambda_0 = 0,6$ мкм.

JapatoBckWW 4.38. Определить максимальную толщину d тонкой пленки масла с показателем преломления n = 1,5 на поверхности жидкости, при которой наблюдается картина интерференции в результате наложения световых волн, отраженных от поверхностей этой пленки, если ширина спектра освещающего излучения Δλ = 40 нм, а средняя длина волны $\lambda = 550$ нм

- 4.39. В интерферометре Майкельсона используется точечный немонохроматический источник света с шириной спектрального контура Δλ = 10 нм и центральной длиной волны λ₀ = 600 нм. Оценить полное число периодов изменения интенсивности света на выходе интерферометра, наблюдаемых при смещении одного из зеркал интерферометра.
- 4.40. В интерферометре Майкельсона используется источник света с равномерным спектральным контуром шириной Δλ = 36 нм и центральной длиной волны λ₀ = 600 нм. Оптическая разность хода волн в интерферометре Δ = 100 мкм. Оценить число интерференционных осцилляций, возникающих в спектре излучения, вышедшего из интерферометра.
- 4.41. В интерферометре Майкельсона с точечным источником света S с центральной длиной волны λ_0 и шириной спектрального контура $\Delta\lambda$ одно из зеркал (M2 на рис.) совершает гармонические колебания с апмлитудой $L_0 >> l_c$, где l_c длина временной когерентности. Фотоприемник PD, установленный на выходе интерферометра, регистрирует осцилляции интенсивности света $I(z_2)$ в зависимости от положения z_2 зеркала M2 интерферометра. Графическая форма этих осцилляций схематично представлена на рисунке. Определить приблизительное значение длины когерентности l_c и ширины спектра $\Delta\lambda$, если известно значение центральной длины волны $\lambda_0 = 0,6$ мкм.

4.42. Определить радиус пространственной поперечной когерентности света протяженного источника диаметром D = 5 мм на экране, расположенном на расстоянии $z_0 = 1$ м от источника. Средняя длина волны света $\lambda_0 = 0,6$ мкм.

- 4.43. В интерференционном опыте Юнга установлено, что интерференционная картина исчезает, когда расстояние между точечными отверстиями в экране становится равным d = 0,6 мм. Определить диаметр D протяженного источника света, если расстояние z от источника до экрана с отверстиями составляет z = 80 см, а средняя длина волны излучения источника λ₀ ≈ 600 нм.
- 4.44. На непрозрачный экран с двумя узкими параллельными щелями падают лучи света непосредственно от Солнца. При каком максимальном расстоянии d между щелями могут наблюдаться интерференционные полосы Юнга за экраном? Угловой диаметр солнца θ ≈ 0,01 рад.
- 4.45. С помощью собирающей линзы L с фокусным расстоянием f = 100 мм на круглом отверстии в непрозрачном экране P1 получено изображение Солнца S'. Диаметр отверстия равен диаметру изображения Солнца. За экраном P1 на некотором расстоянии z₀ помещен экран P2 с двумя узкими параллельными щелями, расположенными на расстоянии d = 0,8 мм друг от друга. При каком расстоянии z₀ между экраном P1 и экраном P2 с щелями могут наблюдаться интерференционные полосы Юнга на экране P3?

4.46. В интерферометре Релея, для исследования прозрачных сред, в качестве вторичного источника света S_2 используется щель, освещаемая первичным протяженным источником S_1 с центральной длиной волны $\lambda_0 = 0,55$ мкм. Определить ширину щели, необходимую для наблюдения достаточно контрастных интерференционных полос, если фокусное расстояние первой линзы L_1 интерферометра $f_1 = 10$ см, а расстояние между щелями в экране равно d = 2,5 см.

- 4.47. В интерференционном опыте Юнга наблюдаются интерференционные полосы с периодом Λ = 3 мм на экране, расположенном на расстоянии z = 50 см от экрана с точечными отверстиями. Определить диаметр D источника, при котором полосы Юнга исчезают, если расстояние z₀ между источником и экраном с точечными отверстиями равно z₀ = 60 см.
- 4.48. Определить угловой размер звезды Бетельгейзе (α Ориона) с точки зрения на поверхности Земли, если с помощью звездного интерферометра Майкельсона установлено, что радиус (длина) поперечной пространственной когерентности красного света (λ₀ = 0,65 мкм) этой звезды примерно равен ρ_c = 3 м.

4.5. Многолучевая интерференция. Интерферометр Фабри-Перо

4.49. Определить коэффициент пропускания интерферометра Фабри-Перо, выполненного из плоскопараллельной стеклянной пластины толщиной h = 5 мкм и n = 1,5, для длины волны $\lambda_0 = 600$ нм пучка света, падающего на пластину под углом $\alpha_0 = 20^0$, если коэффициенты отражения поверхностей пластины R = 0,7. Определить длины волн в диапазоне видимого света, для которых коэффициент пропускания этого интерферометра имеет максимальное значение при нормальном падении пучка света.

- 4.50. Построить график зависимости коэффициента пропускания интерферометра Фабри-Перо, выполненного на основе диэлектрической пленки толщиной h = 2 мкм с показателем преломления n = 1,8 с коэффициентом отражения поверхностей пленки R = 0,8, в зависимости от длины волны λ в диапазоне длин волн λ₁ = 0,4 мкм, λ₂ = 0,7 мкм.
- 4.51. Определить диаметр интерференционного кольца с порядком интерференции m = 48 и длиной волны λ = 600 нм в интерференционной картине, наблюдаемой в интерферометре Фабри-Перо, если фокусное расстояние собирающей линзы f = 100 мм, толщина воздушного зазора между пластинами интерферометра h = 15 мкм
- 4.52. Определить величину изменения толщины воздушного зазора между пластинами интерферометра Фабри-Перо Δh, если в центре интерференционной картины на выходе интерферометра наблюдается пять циклов изменения интенсивности от максимума до минимума при длине волны используемого излучения λ = 600 нм.
- 4.53. Построить график коэффициента пропускания интерферометра Фабри-Перо в нормальном направлении в зависимости от толщины h воздушного зазора между пластинами для излучений с длинами волн λ₁ = 560 нм и λ₂ = 561 нм в диапазоне значений h₁ = 20 мкм и h₂ = 21 мкм. Коэффициенты отражения пластин интерферометра R = 0,8.

Раздел 5. ДИФРАКЦИЯ СВЕТА

5.1. Зонная теория дифракции Френеля

5.1. Экран с круглым отверстием с диаметром D = 2 мм расположении на расстоянии а = 1 м от точечного источника с λ₀ = 560 нм. Определить число зон Френеля в пределах отверстия для точки наблюдения P, расположенной на расстоянии 1,5 м от экрана с другой стороны.

5.2. Определить число зон Френеля m, укладывающихся в круглом отверстии в непрозрачном экране для точки P, указанной на рисунке, в которой наблюдается минимум интенсивности в дифракционной картине на оптической оси z.

- 5.3. На непрозрачный экран с круглым отверстием диаметром D = 4 мм падает плоская волна с длиной волны λ₀ = 580 нм. Определить расстояние между минимумами (темными пятнами) на оптической оси, для которых в пределах отверстия в экране укладывается 6 и 8 зон Френеля.
- 5.4. Параллельный лазерный пучок монохроматического света с длиной волны $\lambda_0 = 0,63$ мкм нормально падает на непрозрачный экран с круглым отверстием диаметром D = 2 мм. На расстоянии b = 20 см за экраном на оси отверстия наблюдается темное дифракционное пятно. На какое минимальное расстояние Δb необходимо сместить точку наблюдения вдоль оси отверстия, чтобы в центре дифракционной картины наблюдалось светлое пятно?

5.5. Определить ширину второй зоны Френеля на плоскости х, у, отстоящей на расстоянии a = 1,5 м от источника света S, для точки наблюдения P, расположенной на оптической оси на расстоянии b = 60 см от плоскости x, y. Длина волны используемого света равна $\lambda_0 = 600$ нм.

- 5.6. Вывести формулу для радиуса т-й зоны Френеля в плоскости зонной пластинки Френеля, если расстояние от источника до зонной пластинки равно а, расстояние от пластинки до точки наблюдения равно b. Длина волны λ₀.
- 5.7. Определить радиус и ширину четвертой зоны в зонной пластинке Френеля с фокусным расстоянием f = 80 см для длины волны $\lambda_0 = 0,56$ мкм.
- 5.8. Фазовая зонная пластинка Френеля сделана из стеклянной плоскопараллельной пластины с показателем преломления n путем прорезания бороздок на глубину h в четных зонах Френеля. Увеличенный фрагмент центрального сечения такой пластины показан на рисунке. Получить формулу расчета необходимой глубины h бороздок, если пластинка Френеля предназначена для работы в свете с длиной волны λ_0 в окружающей среде с показателем преломления n_0 . CapatoBCKNN TOCK

5.9. Показать, что при записи на фотопластинку Р кольцевых интерференционных полос (колец Ньютона), образующихся при интерференции соосных плоской и сферической волн, получается зонная пластинка Френеля с фокусным расстоянием f, равным радиусу кривизны R сферической волны в плоскости фотопластинки.

5.10. Зоны Френеля строятся со стороны вогнутой поверхности сходящейся сферической волны радиуса а. Расстояние от поверхности волнового фронта волны до точки наблюдения Р равно b. Найти выражение для радиуса г_m края m-й зоны Френеля.

- 5.11. С помощью зонной пластинки Френеля формируется изображение точечного источника, удаленного от нее на 1 м. Изображение формируется на расстоянии 2,5 м от поверхности пластинки. Определить положение изображения источника, если его отодвинуть в бесконечность?
- 5.12. Определить фокусное расстояние f зонной пластинки для света с длиной волны λ₀ = 0,55 мкм, если радиус края третьего кольца этой пластинки составляет 1,6 мм. Определить радиус края первой зоны этой пластинки.
- 5.13. Определить интенсивность света I в фокусе зонной пластинки Френеля, если в ней закрыты все зоны, кроме первой? Интенсивность света без пластинки равна I₀, потерями на отражение света от пластины пренебречь.
 - 5.14. Определить интенсивность света I в центре дифракционной картины от круглого непрозрачного экрана, который закрывает всю первую зону Френеля, если интенсивность света в отсутствие экрана в той же точке равна I₀.

PHPHPHPBCKOLC

5.2. Дифракция дальнего поля (дифракция Фраунгофера)

- 5.15. В дифракционной картине Фраунгофера (в дальнем поле дифракции) лазерного пучка с на прямоугольном отверстии с размерами а и b по осям х и у, соответственно, минимумы интенсивности в плоскости х, z, определяемых углами α ≈ 1⁰; 2⁰; 3⁰; ..., а в плоскости у, z углами β ≈ 2⁰; 4⁰; 6⁰; Определить размеры отверстия а и b.
- 5.16. Апертурная диафрагма дифракционно ограниченного объектива (исправленного от аберраций) имеет форму квадрата с длиной стороны D. Точечный монохроматический источник света с длиной волны λ₀ расположен на оптической оси объектива. Получить выражение для распределения интенсивности света, получающегося в результате дифракции на краях диафрагмы, в плоскости x, y, перпендикулярной к оптической оси и проходящей через фокус P геометрического схождения лучей, расположенного на расстоянии z от диафрагмы.

5.17. Лазерный пучок с λ₀ = 0,63 мкм падает на экран с двумя узкими параллельными щелями шириной b = 0,1 мм, находящимися на расстоянии d = 0,4 мм друг от друга. Картина дифракции дальнего поля и интерференции волн от щелей наблюдается в задней фокальной плоскости х, у объектива с фокусным расстоянием f = 150 мм. Построить график распределения интенсивности I(x) в дифракционной картине в направлении х, перпендикулярном щелям. Определить расстояние Δx между соседними минимумами интерференционной картины.

- 5.18. Картина дифракции параллельного лазерного пучка с λ₀ = 0,532 мкм на круглом отверстии диаметром D = 5 мм наблюдается в задней фокальной плоскости x, y исправленного от аберраций объектива с фокусным расстоянием f = 100 мм. Построить график распределения интенсивности I(x) в дифракционной картине и построить изображение дифракционной картины I(x,y) в градациях серого. Определить диаметр d центрального пятна в этой картине.
- 5.19. На тонкую проволоку диаметром d = 0,3 мм падает лазерный пучок с λ₀ = 0,63 мкм и наблюдается картина дифракции дальнего поля в плоскости x, y на расстоянии z = 5 м от проволоки. Определить расстояния Δx_m между минимумами интенсивности в картине дифракции дальнего поля на проволоке.

5.3. Дифракционная расходимость оптических пучков. Дифракционный предел разрешения оптических систем

5.20. Параллельный лазерный пучок с λ₀ = 0,65 мкм пропускают через круглое отверстие с диаметром Da = 2 мм в непрозрачном экране. Определить диаметр D лазерного пучка, прошедшего через отверстие, на расстоянии z = 5 м от экрана.

- 5.21. Сделать оценку для угла дифракционной расходимости лазерного пучка с $\lambda_0 = 0,63$ мкм, если на выходном зеркале резонатора лазера диаметр пучка d = 1 мм. Определить диаметр d_z лазерного пучка на расстоянии z = 100 м от лазера.
- 5.22. Определить угол дифракционной расходимости пучка света с длиной волны $\lambda = 600$ нм, прошедшего через круглое отверстие D = 0,06 мм в непрозрачном экране.

5.23. В сходящийся лазерный пучок установлен непрозрачный экран с круглым отверстием диаметром D = 15 мм. Определить диаметр лазерного пятна в фокусе пучка, если экран расположен на расстоянии z = 75 мм от фокуса.

5.24. Оптическая система для фокусировки параллельного лазерного пучка с фокусным расстоянием f = 25 мм и апертурной диафрагмой диаметром D = 10 мм полностью исправлена от аберраций. Определить диаметр лазерного пятна d в фокусе оптической системы, если длина волны лазерного излучения λ₀ = 0,63 мкм.

5.25. Пучок параллельного лазерного пучка с $\lambda_0 = 0,63$ мкм преобразуется оптической системой, состоящей из двух безаберрационных объективов L₁ и L₂. Определить диаметр лазерного пучка в области его фокусировки объективом, если диаметр апертурной диафрагмы этого объектива D₂ = 10 мм, а фокусное расстояние f₂ = 50 мм. Расстояние от заднего фокуса объектива L₁ до объектива L₂.

5.26. Дифракционно ограниченная (безаберрационная) оптическая система формирования изображения имеет апертурную диафрагму с диаметром $D_a = 30$ мм и фокусное расстояние f = 80 мм. Оценить разрешающую способность (в линиях на мм) этой системы в параксиальной области для поверхности предмета P, находящегося на расстоянии $z_0 = 20$ см от передней главной плоскости H оптической системы. Освещающий предмет источник S имеет среднюю длину волны $\lambda_0 = 0,55$ мкм.

5.27. Для увеличения диаметра лазерного пучка и уменьшения его дифракционной расходимости используется телескопическая оптическая система – коллиматор, состоящая из двух безаберрационнных объективов L₁ и с фокусными расстояниями f₁ < f₂ и совмещенными фокальными плоскостями. Определить угол дифракционной расходимости α расширенного лазерного пучка, вышедшего из объектива L₂, если диаметр его апертуры D₂ и лазерный пучок равномерно заполняет всю апертуру этого объектива.

5.28. Диаметр параболического зеркала телескопа D = 10 м. Найти разрешаемое им угловое расстояние $\Delta \alpha$ для длины волны $\lambda_0 = 0,55$ мкм. Какова должна быть минимальная длина отрезка на Луне, чтобы его изображение в телескопе можно было отличить от изображения точки? Каково должно быть минимальное расстояние между двумя объектами на поверхности Марса, чтобы их изображения в телескопе можно было видеть раздельными? Считать что Марс, наблюдается в момент великого противостояния, когда расстояние до него от Земли минимально и составляет 56•106 км.

- 5.29. Лазерный пучок с длиной волны $\lambda_0 = 512$ нм и мощностью P = 1 Вт направляется на спутник с помощью телескопа, диаметр объектива которого равен D = 400 мм. Свет, отраженный спутником, принимается другим таким же телескопом и фокусируется на фотодетектор с пороговой чувствительностью $P_0 = 10^{-12}$ Вт. При каком расстоянии z до спутника отраженный сигнал может быть обнаружен, если поверхность спутника равномерно отражает падающий на него свет в пределах телесного угла 2π ? Диаметр спутника d = 1 м.
- 5.30. Максимальный диаметр зрачка глаза человека равен 8 мм, расстояние от хрусталика до сетчатки глаза z = 24 мм. Определить линейную Δx и угловую $\Delta \alpha$ разрешающую способность глаза для зеленого света. Показатель преломления стекловидного тела глаза считать равным n = 1,336. Найти наименьшее разрешаемое глазом расстояние Δx_0 между штрихами, начерченными на листе бумаги, находящемся на расстоянии $z_0 = 30$ см.

5.31. Микрообъектив микроскопа L имеет числовую апертуру NA = $n \sin \alpha = 0, 2$, где n показатель преломления среды между предметом и первой линзой микрообъектива, α - апертурный угол микроскопа – угол между оптической осью микрообъектива и крайним лучом, попадающим в апертуру микрообъектива L. Определить разрешающую способность микроскопа Δx для предмета A в зеленом свете $(\lambda_0 = 0.55 \text{ MKM}).$ atoBchin

5.32. Определить разрешающую способность безаберрационного фотографического объектива при формировании в зеленом свете изображения удаленного объекта, если максимальное относительное отверстие объектива составляет $D_a/f = 1/2$, где D_a - диаметр апертурной диафрагмы объектива, f - фокусное расстояние.

5.4. Дифракционные решетки

- 5.33. Получить формулу для углового распределения интенсивности света при дифракции Фраунгофера (дифракции дальнего поля) на амплитудной решетке из N щелей и с периодом расположения щелей d и шириной щели b при условии, что световые лучи падают на решетку нормально.
- 5.34. На дифракционную решетку с периодом штрихов d = 1 мкм падает нормально параллельный пучок света с длиной волны λ = 500 нм. Дифракционная картина наблюдается в задней фокальной плоскости собирающей линзы с фокусным расстоянием f = 100 мм. Определить расстояние Δх между главными максимумами дифракционной картины.
- 5.35. На дифракционную решетку с периодом штрихов d = 1,5 мкм падает параллельный лазерный пучок с длиной волны $\lambda_0 = 0,63$ мкм под углом падений $\alpha_0 = 30^0$. Определить угол β , который составляет второй порядок дифракции с нормалью к решетке.

5.36. Дифракционная решетка имеет период d = 10 мкм и ширину щелей b = 2 мкм. Определить число главных максимумов 2m в дифракционной картине, наблюдаемых в пределах главного максимума дифракции света от одной щели. 5.37. Дифракционная решетка изготовлена путем записи на высокоразрешающую фотопластинку картины интерференции двух плоских волн лазерного света с длиной волны $\lambda_0 = 0,63$ мкм, сходящихся под углом $\theta = 30^0$, при расположении фотопластинки Р перпендикулярно биссектрисе угла Ө. Полученную таким образом дифракционную решетку освещают лазерным пучком с той же длиной волны $\lambda = 0,63$ мкм. Определить угол дифракции α_1 лазерного пучка первого порядка $(m = \pm 1)$.

- 5.38. На дифракционную решетку падает параллельный пучок света, спектр которого содержит две линии с длинами волн $\lambda_1 = 0,55$ мкм и $\lambda_2 = 0,56$ мкм. Картина дифракции наблюдается в задней фокальной плоскости линзы с фокусным расстоянием f = 300 мм. Определить расстояние между главными максимумами дифракции второго порядка с длинами волн λ_1 и λ_2 .
- 5.39. На отражательную профилированную решетку с периодом штрихов d = 10 мкм падает пучок света с длиной волны $\lambda = 532$ нм под углом α_0 . Определить значение угла α_0 , при котором дифрагированный пучок первого порядка распространяется перпендикулярно плоскости решетки. JapatoBchi

- 5.40. Определить длину волны света третьего порядка дифракции на дифракционной решетке, который совпадает с четвертым порядком дифракции света λ = 0,5 мкм.
- 5.41. Определить, перекрываются ли спектры первого и второго порядков дифракционной решетки с любым периодом d при освещении ее видимым светом с шириной спектрального интервала 0,4-0,7 мкм?
- 5.42. Найти условие равенства нулю интенсивности 3-го главного максимума дифракции на амплитудной дифракционной решетке с периодом d и шириной щели b.
- 5.43. Определить максимальный порядок m дифракции света с длиной волны λ на решетке с периодом d. Определить минимальный период d решетки, на которой наблюдается максимально возможный угол дифракции первого порядка, m = 1, для света с длиной волны λ.
- 5.44. Определить угловую дисперсию D = Δα/Δλ [град/мкм] в спектре первого порядка дифракции для решетки с 1200 штрихами на 1 мм. Определить линейную дисперсию спектрографа с такой решеткой при использовании объектива с фокусным расстоянием 40 см.
- 5.45. Какое линейное расстояние ΔI между компонентами желтой линии дублета натрия (λ1=5890 Å, λ2=5896 Å) получится на фотоэлектрическом регистраторе - ПЗСлинейке в спектрографе с дифракционной решеткой с 1000 штрихами на 1 мм и фокусирующим объективом с f = 100 мм. Спектральные линии наблюдаются в первом порядке дифракции.
- 5.46. На плоскую отражательную дифракционную решетку нормально падает пучок света D-линии натрия, λ = 0.589 мкм. Определить период решетки d, если спектр второго порядка дифракции наблюдается под углом 30° к нормали.
- 5.47. Определить, с каким полным числом штрихов решетки N разрешается натриевый дублет, λ1=0,589 мкм, λ2=0,5896 мкм, в первом порядке дифракции.
- 5.48. Определить разрешающую силу решетки с периодом d = 0,5 мкм и полной шириной
 2,5 см во втором порядке дифракции.

5.5. Дифракция света на объемных решетках. Дифракция на акустических волнах

5.49. Кристаллическую решетку можно представить в виде периодически расположенных атомных слоев. Если на кристалл направить параллельный пучок рентгеновского излучения под некоторым углом θ к атомным слоям, то можно наблюдать интерференционное усиление волн, отразившихся от соседних слоев под тем же углом θ . Получить уравнение для угла θ , длины волны λ_0 рентгеновских лучей и периода расположения атомных слоев Λ , определяющее условие сфазированности и интерференционного усиления волн, отразившихся от атомных слоев.

5.50. Объемная дифракционная решетка в прозрачном слое толщиной h представляет вариаций собой периодическую систему показателя преломления $n(x) = n_0 + \Delta n \cos(2\pi x/\Lambda)$ вдоль некоторого направления x при постоянстве значений n вдоль осей у и z. На рисунке максимумы показателя преломления n показаны горизонтальными линиями, расположенными с периодом Л. На решетку падает под углом θ_0 параллельный пучок света с длиной волны λ_0 , преломляется на границе раздела воздух-слой, падает под скользящим углом θ на поверхность максимума показателя преломления п и частично отражается от каждой такой поверхности. Получить уравнения для Λ , θ , λ и Λ , θ_0 , λ_0 , определяющие условие сфазированности всех волн, отраженных от поверхностей максимумов показателя преломления, и, соответственно, условие формирования дифрагированного пучка JapatoBCHN света.

5.51. На фотопластинку с фоточувствительным слоем толщиной h = 10 мкм и показателем преломления n = 1,4 записывается картина интерференции двух плоских лазерных волн с $\lambda_1 = 0,63$ мкм, сходящихся под углом $2\theta_1 = 45^0$ друг к другу. Фотопластинка располагается перпендикулярно биссектрисе угла θ_1 . После экспонирования фотопластинка подвергается такой фотохимической обработке (проявлению, закреплению и отбеливанию), что в областях максимальной интенсивности света увеличивается показатель преломления фотослоя. Таким образом получается фазовая объемная дифракционная решетка с синусоидальным изменением показателя преломления фотослоя. Определить, под каким углом θ_2 необходимо направить на такую дифракционную решетку лазерный пучок с длиной волны $\lambda_2 = 0,532$ мкм, чтобы наблюдать дифрагированный под углом Брэгга лазерный пучок света.

5.52. В кристалле ниобата лития (LiNbO₃) возбуждается продольная акустическая волна с частотой $f_a = 40 \text{ M}\Gamma$ ц с помощью пьезоэлектрического преобразователя РЕТ при подаче на него переменного напряжения U с частотой $f_s = f_a$. Определить угол падения θ лазерного пучка с $\lambda_0 = 0,63$ мкм на поверхность кристалла для выполнения условия дифракции Брэгга и наблюдения дифрагированного на акустической волне в кристалле лазерного пучка. Скорость распространения продольной звуковой волны v_a в кристалле LiNbO₃ равна $v_a = 6550 \text{ м/c}$.

5.53. Определить частоту fs переменного электрического сигнала, подаваемого на пьезоэлектрический преобразователь акустооптической ячейки, если наблюдается дифрагированный на акустической волне В ячейке лазерный пучок. распространяющийся под углом $\alpha = 12^{\circ}$ по отношению к направлению падающего на ячейку лазерного пучка. Скорость распространения звука в кристалле ячейки пучка $v_a = 5960 \text{ M/c}$ (плавленый кварц, SiO2). Длина волны лазерного $\lambda_0 = 0,6328$ MKM.

5.54. На пьезоэлектрический преобразователь акустооптической ячейки подается электрический сигнал переменного напряжения U_s с частотой f_s = 500 МГц и в ячейке возбуждается стоячая акустическая волна, образующаяся в результате интерференции (наложения) прямой и отраженной от противоположной грани кристалла ячейки бегущих акустических волн. На ячейку под углом Брэгта θ направляется лазерный пучок с λ₀ = 0,532 мкм и наблюдается дифрагированный лазерный пучок. Определить угол падения и дифракции θ, а также частоту f модуляции интенсивности дифрагированного лазерного пучка, если скорость акустической волны в кристалле ячейки 616 м/с (кристалл парателлурита, TeO2).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бутиков Е.И. Оптика. С.-Петербург: Невский Диалект: БХВ-Петербург, 2003. 480 с.
- Ландсберг Г.С. Оптика. Издание 5-е. М.: Наука, 1976. 928 с. Издание 6-е. М.: Наука, 2006. – 928 с.
- Савельев И.В. Курс общей физики. Т.2. Электричество и магнетизм. Волны. Оптика. – М.: Наука, 1982. – 496 с. – С-Пб.: Лань, 2008. – 496 с.
- Калитеевский Н.И. Волновая оптика. М.: Высшая школа, 1995. 463 с. С-Пб.: Лань, 2008. – 480 с.
- Сивухин Д.В. Общий курс физики. Оптика. М.: Наука, 1976. 752 с.
 3-е изд., стереот. М.: ФИЗМАТЛИТ, 2005. 792 с.
- Стафеев С.К., Боярский К.К., Башнина Г.Л. Основы оптики. С.-П.: Изд-во «Питер», 2006. – 336 с.
- Ахманов С.А., Никитин С.Ю. Физическая оптика: Учебник. М.: Изд-во Моск. ун-та, 1998. – 656 с.
- 8. Матвеев А.Н. Оптика. М.: Высшая школа, 1985. 351 с.
- 9. Годжаев Н.М. Оптика. М.: Высшая школа, 1977. 432 с.
- Горелик Г.С. Колебания и волны. Введение в акустику, радиофизику и оптику. 3-е изд. – М.: ФИЗМАТЛИТ, 2008. – 656 с.

Задачники

- Сборник задач по общему курсу физики. Оптика. / Под ред. Д.В.Сивухина, изд. 4. М.: Наука, 1977. – 320 с.
- 12. И.Е.Иродов. Задачи по общей физике. М.; Наука, 1988. 446 с.
- Ильичева Е.Н., Кудеяров Ю.В., Матвеев А.Н. Методика решения задач оптики. /Под ред. А.Н.Матвеева. М.: Изд-во Моск. ун-та, 1981. 232 с.

Дополнительная литература

- 4. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 720 с.
- 15. Дитчберн Р. Физическая оптика. М.: Наука, 1965. 631 с.
- 16. Учебно-методические материалы по оптике, размещенные на Интернет-сайте кафедры оптики и биофотоники <u>http://optics.sgu.ru</u>
- Федосов И.В. Геометрическая оптика (учебное пособие). Саратов: Сателлит. 2008.
 92 с.

Учебное издание

Владимир Петрович Рябухо

K. HephbilleBckoro СБОРНИК ЗАДАЧ ПО ОБЩЕМУ КУРСУ ФИЗИКИ волноваяоптика VHNBepcynet

Caja CapatoBowMin FOCULAROCULAR Саратовский государственный университет

N.

физический факультет

кафедра оптики и биофотоники