МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра электроники, колебаний и волн

Тема магистерской диссертации:

Определение оптимальной конструкции, обеспечивающей необходимые выходные характеристики для ЛБВ в V-диапазоне с СЗС

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студентки 2	курса	2231	группы
-------------	-------	------	--------

направления 03.04.03 «Радиофизика», профиль «Физика микроволн»

института физики

Евлушиной Олеси Алексеевны

Научный руководитель доцент кафедры основ проектирования приборов СВЧ, к. ф. – м. н.

одпись, дата

В. И. Роговин

Зав. кафедрой электроники, колебаний и волн, доцент, к. ф. – м. н.

подпись, дата 09.06.2025r.

С. В. Гришин

Саратов, 2025 г.

оглавление

Введение	
Глава 1. Обзор литературы	4
Глава 2. Используемое программное обеспечение	4
Глава 3. Определение первоначальной конфигурации ВЧ-пакета	
Глава 4. Расчет электродинамических характеристик	спиральной
замедляющей системы	6
Глава 5. Учет влияния шероховатости поверхности плющенной	микроленты
на электродинамические характеристики	
Глава 6. Расчет выходных характеристик ЛБВ	
Заключение	12
Список литературы	

ВВЕДЕНИЕ

Актуальность данной работы обусловлена освоением коротковолнового диапазона и стремительным развитием различных отраслей промышленности, что, в свою очередь, привело к росту исследований и разработок усилителей СВЧ V-диапазона. Одним из основных элементов усилителей СВЧ, является лампа бегущей волны (ЛБВ) [1].

Цель данной работы заключается в определении оптимальной конфигурации ВЧ-пакета и пространства взаимодействия спутниковой ЛБВ с СЗС в V-диапазоне с использованием отечественных серийных технологий и элементной базы. Для достижения цели поставлены следующие задачи:

- 1. обзор литературы, посвящённой исследованиям в области проектирования ЛБВ V-диапазона частот;
- выбор первоначальной конфигурации с использованием авторского программного обеспечения (ПО);
- 3. изучение методологии проектирования C3C в ANSYS HFSS и адаптация решателя, для более точного расчета;
- 4. определение оптимальной конфигурации ВЧ-пакета и его параметрическая оптимизация, а также расчет характеристик;
- проектирование пространства взаимодействия с применением авторского ПО, основанного на одномерной нелинейной модели взаимодействия пучка с волной.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

В 1995 году впервые была установлена перекрестная связь между спутниками с использованием V-диапазона частот (40-75 ГГц) [2]. Основное преимущество диапазона – широкая полоса пропускания. Диапазон имеет низкую помехоустойчивость [3] и подвержен атмосферной абсорбции [4]. Такой процесс может обеспечить стабильную и более надежную связь между спутниками. Поэтому V-диапазон является идеальным для использования в связи между спутниками.

Наибольшее распространение для использования в спутниковых системах связи получили ЛБВ с СЗС. Анализ литературы [5 – 15], показал, что подобные ЛБВ должны обладать выходной мощностью не менее 40 Вт, коэффициентом усиления приблизительно 40 дБ и достаточно высоким КПД на уровне 6-10%. Также представленные работы показали, что использование СЗС является перспективным направлением при разработке ЛБВ V-диапазона.

ГЛАВА 2. ИСПОЛЬЗУЕМОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Программное обеспечения «Optica» [16, 17] использовалось для определения основных характеристик электронно-оптической системы и магнитной периодической фокусирующей систем (МПФС), необходимых для получения параметров и конфигурации электронного пучка для достижения заданных СВЧ-характеристик ЛБВ. В основу программы заложена группа параметров, связанная между собой уравнениями для плотности тока, выходной мощности, безразмерного параметра спирали и формулой для расчета амплитуды магнитного поля.

Для расчет электродинамических характеристик (ЭДХ) использовался программный комплекс ANSYS Electronics Suite HFSS [18]. В его основе лежит численный алгоритм решения уравнений Максвелла с применением метода конечных элементов (МКЭ) и граничных условий типа Флоке.

Расчет пространства взаимодействия (ПВ) осуществлялся с использованием авторской программы [19], [20]. Процессы взаимодействия бегущей электромагнитной волны с пучком описываются системой интегро-

дифференциальных уравнений в частных производных, состоящей из уравнения возбуждения, уравнения движения заряженных частиц и уравнения для расчета гармоник тока.

ГЛАВА 3. ОПРЕДЕЛЕНИЕ ПЕРВОНАЧАЛЬНОЙ КОНФИГУРАЦИИ ВЧ-ПАКЕТА

На первом этапе проектирования конструкции были определены оптимальные размеры: диаметр экрана, диаметр катода и уровень магнитной индукции. Значение ускоряющего напряжения выбиралось из интервала 10-14 кВ. Диаметр канала для прохождения пучка – от 0.45 до 0.55 мм, заполнения пучком пролетного канала – 0.5-0.6. Радиус катода выбран в пределах технологических возможностей: 0.75-1 мм, а максимальный ток катода не превышал 100 мА. Расчеты проведены на центральной частоте V-диапазона, равной 60 ГГц. Все полученные данные должны соответствовать требованиям, указанным в табл. 1.

 Таблица 1. Оптимальные значения для конструкции ЛБВ V-диапазоне

 J_c
 $\gamma_e a$ P_{BLIX} B_o

 < 5 A\cm²</td>
 < 1.5</td>
 > 50 BT
 < 3900 гс</td>

Здесь J_c – плотность тока, γ_{ea} – безразмерный параметр, P_{вых} – выходная мощность, B_o – амплитуда магнитного поля. Значения выбраны из инженернотехнических соображений. Результат расчетов, представлен в табл. 2.

Параметр	Значение	Параметр	Значение
Частота	60 ГГц	D _{экрана} /D _{канала}	≈ 3.0
Электронный КПД	$\approx 5-8$ %	D _{экрана}	1.4 – 1.7 мм
Плотность тока	не более 5 А/см ²	D _{катода}	1.5 мм
Диаметр пролетного канала	pprox 0.55 мм	Выходная мощность	52 Вт
Ток пучка	не более 85 мА	Плотность тока	4.53 A/см ²
Напряжение ЗС	13 000 – 13 500 B	B ₀	2900 Гс

Таблица 2. Результат расчета с помощью программы «Optica»

Приближенное значение шага определялось исходя из геометрического замедления по формуле: $h = \frac{2\pi r}{\sqrt{n^2 - 1}}$, где r – радиус спирали, n – замедление.

Замедление рассчитывалось из напряжения 3С: $n = \frac{505}{\sqrt{U}}$, где U – напряжение 3С.

ГЛАВА 4. РАСЧЕТ ЭЛЕКТРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК СПИРАЛЬНОЙ ЗАМЕДЛЯЮЩЕЙ СИСТЕМЫ

Для определения оптимального варианта конструкции СЗС для ЛБВ Vдиапазона частот, был выполнен расчет, анализ и сравнение ЭДХ для различных конфигураций элементов СЗС.

Исследование ЭДХ спиральной замедляющей системы с разной геометрией диэлектрических опорных стержней проводилось путем сравнения ЭДХ для прямоугольных, Т-образных и трапецеидальных стержней.

(a) (б) Рис. 1. Гистограмма распределения сопротивления связи (а) и затухания (б) для различной геометрии диэлектрических опорных стержней

Использование Т-образных стержней позволило увеличить сопротивление связи на 1.5% и минимизировать потери на 13.5%.

Диаметр пролетного канала равен 0.55 мм (из программы «Optica»). Отношение диаметра экрана к диаметру канала должно быть в интервале от 2 до 3. Были определены шесть возможных в реализации вариантов значения диаметра экрана, удовлетворяющих этому условию (от 1.2 до 1.7 мм).

Рис. 2. Зависимость сопротивления связи (а) и затухания (б) от диаметра экрана

Диаметр экрана СЗС, равный 1.7 мм, обеспечил оптимальное сочетание высокого сопротивления связи (выше на 8%) и низких потерь (ниже на 15%).

Сечение для спиральной микроленты выбирались исходя из технологических возможностей. Для анализа были выбраны сечения равные 0.25×0.10, 0.2×0.1 и 0.150×0.075 мм.

Рис. 3. Зависимость сопротивления связи (а) и затухания (б) от сечения микроленты

Наилучшие ЭДХ достигались при размерах прямоугольного сечения спиральной микроленты, равным 0.15×0.075. Именно при этом сечении СЗС демонстрировала максимальное сопротивление связи (выше на 11%) и минимальные потери (ниже на 21%).

Итоговый вариант геометрических размеров и модель одного периода СЗС для ЛБВ V-диапазона представлены в табл. 3 и на рис. 4.

Таблица 3. Параметры СЗС для ЛБВ V-диапазона час			
Параметры	Значения		
Внутренний диаметр экрана, мм	1.7		
Ширина нижней части стержня, мм	0.2		
Ширина верхней части стержня, мм	0.4		
Высота нижней части стержня, мм	0.2		
Высота стержня, мм	0.5		
Диаметр пролетного канала спирали, мм	0.55		
Сечение спиральной микроленты, мм	0.150×0.075		

В качестве материалов для элементов СЗС были выбраны: медь с проводимостью 3.8×10⁷ См/м – для комбинированного экрана; оксид бериллия с диэлектрической проницаемостью 6.4 и тангенсом угла диэлектрических потерь, равным 5×10⁻⁴ – для Т-образных диэлектрические опорные стержни; сплав МАГТ-0.2 (медь – 99.98%, алюминий, гафний и титан – 0.2%) – для спирали, выполненной из микроленты прямоугольного сечения.

Рис. 4. Итоговая конструкция C3C с Т-образными стержнями (модель, созданная в HFSS): 1 – медный комбинированный экран, 2 – Т-образные опорных диэлектрические стержни, 3 – микролента прямоугольного сечения.

ГЛАВА 5. УЧЕТ ВЛИЯНИЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ ПЛЮЩЕННОЙ МИКРОЛЕНТЫ НА ЭЛЕКТРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

С переходом в коротковолновую часть СВЧ-диапазона наличие неоднородностей в СЗС оказывает влияние на ЭДХ и выходные характеристики. Поэтому была проведена оценка влияния шероховатости микроленты на ВЧ-характеристики. Исходя из способов обработки детали, известна лишь средняя высота шероховатости, поэтому в HFSS для расчетов использовалась модель Гройсса [21] поправочный коэффициент которой равен: $K = 1 + \exp(-(\frac{\delta}{2R_q})^{1.6})$, где R_q – среднеквадратичное значение высоты шероховатости, δ – толщина скин-слоя.

Для определения R_q оценка шероховатости проводилась двумя методами: с помощью анализа шероховатости прокатных валов; с помощью стилусной профилометрии (данные предоставлены коллективом Саратовского филиала ИРЭ РАН им. В. А. Котельникова, в частности инженером Ножкиным Д.А.). Полученные результат с помощью стилусной профилометрии подтверждают результаты полученные с помощью оценки шероховатости прокатных валов и $R_q = 0,57$ мкм.

В статье [22], [23] указывалось и подтверждалось, что модели, представленные ANSYS HFSS неэффективны на частотах более 30 ГГц. Поэтому было проведено сравнение расчетов ЭДХ для Х-, Ки-, К-диапазонов без учета шероховатости, с учетом шероховатости по модели Гройсса и с учетом шероховатости с помощью использования поправочного коэффициента, равного √2. Этот поправочный коэффициент получен при лучшем совпадении расчетных и экспериментальны характеристик ЛБВ.

Рис. 5. Гистограмма распределения затухания для «оптимальных» конфигураций СЗС в X-, Ки, К-диапазонах частот без учета шероховатости с учетом шероховатости

двумя способами

Разница между затуханием из ANSYS HFSS без и с учетом шероховатости составила $\approx 3\%$. При этом разница между ANSYS HFSS с учетом шероховатости и поправочным коэффициентом составила менее 1%. В связи с этим в V-диапазоне частот можно использовать поправочный коэффициент $\sqrt{2}$.

ГЛАВА 6. РАСЧЕТ ВЫХОДНЫХ ХАРАКТЕРИСТИК ЛБВ

Результаты ЭДХ СЗС для ЛБВ в V-диапазоне частот позволили провести расчёт ПВ ЛБВ и, как следствие, оценить основные выходные характеристики. Выбранная конфигурация ПВ представлена на рис. 2.

Рис. 6. Конфигурация ПВ

Были рассчитаны выходные характеристики в линейном и нелинейном режимах. В главе 5 было установлено, что с переходом в коротковолновую часть СВЧ-диапазона наличие шероховатостей в СЗС оказывает влияние на ЭДХ и выходные характеристики. В связи с этим было оценено влияния шероховатости поверхности спиральной микроленты на выходные характеристики СЗС. Расчетное затухание с учетом шероховатости составило 1,0696 дБ/см при шаге шероховатости 1,04h0 и 1,2209 дБ/см на при шаге h0 (затухание увеличилось на 30%).

На рис.6 представлены графики, показывающие, как изменялись выходные характеристики в линейном и нелинейном режимах при наличии или отсутствии шероховатостей на спирали.

(в) Рис. 7. (а) – линейный режим, (б), (в), (г) – нелинейный режим (1 – без учета шероховатости, 2 – с учетом шероховатости)

Максимальное усиление в линейном режиме достигалось при напряжении 12.8 кВ. Однако при наличии шероховатости коэффициент усиления снижался на 1.4 дБ (на 2.2%). В нелинейном режиме выходная мощность достигала насыщения при напряжении, равном 13.6 кВ, и в условиях наличия шероховатости выходная мощность уменьшалась на 11.3%, КПД – на 1%, а коэффициент усиление – на 1.1 дБ (на 2.6%).

ЗАКЛЮЧЕНИЕ

В рамках данной работы была определена оптимальная конфигурация ВЧ-пакета и пространства взаимодействия спутниковой ЛБВ с СЗС в Vдиапазоне с использованием отечественных серийных технологий и элементной базы. Было определено, что при выходной мощности более 45 Вт и токе пучка не более 85 мА с плотностью тока 4.53 А/см² и с напряжением 13000 – 13500 В, а также электронным КПД 5 – 8 % на частоте 60 ГГц магнитное поле будет составлять 2900 Гс. При этом диаметр катода будет равен 1.5 мм, а диаметр пролетного канала 0.55 мм.

Для определения оптимального варианта конструкции C3C для ЛБВ Vдиапазона частот с помощью программы ANSYS HFSS, был выполнен расчет, анализ и сравнение ЭДХ для различных конфигураций элементов C3C. В итоге была получена конструкция с экраном диаметром 1.7 мм выполненным из меди с проводимостью 3.8×10^7 См/м, Т-образными диэлектрическими опорными стержнями, выполненными из оксида берилия с диэлектрической проницаемостью 6.4 и тангенсом угла диэлектрических потерь равным 5×10^{-4} , а также спиральной микроленты прямоугольного сечения 0.15×0.075 из материала МАГТ-0.2 с проводимостью 1.5×10^7 См/м и диаметром пролетного канала 0.55 мм.

Поскольку с переходом в коротковолновую часть СВЧ-диапазона наличие неоднородностей в СЗС оказывает влияние на ЭДХ и выходные характеристики, было оценено влияние шероховатости микроленты на ВЧ-характеристики СЗС. Так как статьи [22], [23] показали, что модели, предоставляемые ANSYS HFSS, неэффективны на частотах более 30 ГГц был использован поправочный коэффициент, равный √2. Разница между затуханием составила 30%.

Результаты ЭДХ СЗС для ЛБВ в V-диапазоне частот позволили провести расчёт ПВ ЛБВ и, как следствие, оценить ключевые выходные характеристики. Для расчета выходных характеристик использовалась конструкция ПВ, имеющая общую длину, равную 125 мм, и состоящая из двух

12

секций. На разрыв между ними приходилось затухание 10 дБ. Лампа характеризовалась постоянным шагом на входе и изохронностью. Кроме того, в схеме присутствовал один поглотитель, затухание которого равно 27 дБ.

В рамках анализа были рассчитаны выходные характеристики в линейном и нелинейном режимах. Максимальное усиление в линейном режиме достигалось при напряжении 12.8 кВ. Однако, при наличии шероховатости, коэффициент усиления снижался с 66.2 дБ на 1.4 дБ (на 2.2%). В нелинейном режиме выходная мощность достигала насыщения при напряжении, равном 13.6 кВ, и, в условиях наличия шероховатости, выходная мощность уменьшалась с 72.1 Вт на 11.3%, КПД – на 1%, а коэффициент усиления с 42 дБ на 1.1 дБ (на 2.6%).

Таким образом показано что в V-диапазоне возможно изготовление ЛБВ с выходной мощностью не менее 50 Вт, коэффициентом усиления не менее 40 дБ, КПД на уровне 7.5% при напряжении 13.6 кВ.

СПИСОК ЛИТЕРАТУРЫ

[1] Гилмор-мл А. Лампы с бегущей волной. – Litres, 2015.

[2] Гнатюк Д. Л. и др. Электроника и микроэлектроника СВЧ //Электроника. – 2022. – Т. 1. – С. 79-83.

[3] Belov L. A., Smolskiy S. M., Kochemasov V. N. Handbook of RF, microwave, and millimeter-wave components. – Artech house, 2012.

[4] Kizer G. Digital microwave communication: engineering point-to-point microwave systems. – John Wiley & Sons, 2013.

[5] Palm A., Shin Y. M. Development of novel traveling wave tube amplifiers for V-band microwave power modules (MPMs) at the Northern Illinois University (NIU) //IEEE International Vacuum Electronics Conference. – IEEE, 2014. – C. 201-202.

[6] Li L. et al. Design and experiment of a V-band helix TWT //2013 IEEE 14th International Vacuum Electronics Conference (IVEC). – IEEE, 2013. – C. 1-2.

[7] Robbins N. R. et al. Space qualified, 75-watt V-band helix TWTA //IVEC 2012.
– IEEE, 2012. – C. 349-350.

[8] Robbins N. R. et al. Space qualified, 75-watt V-band helix TWTA //IVEC 2012.
– IEEE, 2012. – C. 349-350.

[9] Liao M. et al. A novel folded waveguide for V-band TWT //IEEE Transactions on Plasma Science. – 2015. – T. 43. – №. 12. – C. 4088-4091.

[10] J. H. Booske et al., "Vacuum Electronic High Power Terahertz Sources," in IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 54-75, Sept. 2011.

[11] A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes,
R. Barchfeld, M. Field and N. C. Luhmann, "Performance of a nano-cnc machined
220-ghz traveling wave tube amplifier", IEEE Transactions on Electron Devices,
vol.64, no.5, pp. 2390-2397 2017

[12] Tao C. et al. Design and Simulation of a V Band High-power TWT with Rectangular-ring Vertex Double-bar SWS //2024 Photonics & Electromagnetics Research Symposium (PIERS). – IEEE, 2024. – C. 1-3.

[13] N. M. Ryskin, A. G. Rozhnev, A. V. Starodubov, A. A. Serdobintsev, R. A. Torgashov, V. V. Galushka and A. M. Pavlov, "Development of planar slow-wave structures for low-voltage millimeter-band vacuum tubes", in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 1-2, IEEE, 2018

[14] M. Vinothkumar, A. Chauhan and S. Gupta, "Review of planar slow wave structures for travelling wave tube", International Journal of Pure and Applied Mathematics, Vol. 119 No. 10 2108, 273-277

[15] Ryskin N. M. et al. Development and Modeling of a V-Band Traveling-Wave Tube With a Microstrip Meander-Line Slow-Wave Structure //2023 24th International Vacuum Electronics Conference (IVEC). – IEEE, 2023. – C. 1-2.

[16] Морев С.П. Проектирование электронно-оптических систем ЭВП О-типа с многоскоростным электронным пучком в режиме диалога с ЭВМ. Ч.1 Математическая модель, алгоритмы/ Морев С.П., Журавлева В.Д., Филатов В.А., Полищук Е.К., Кивокурцев А.Ю., Роговин В.И., Электронная техника, серия 1, Электроника СВЧ – 1990, вып.4(428) – с. 37 – 42

[17] Морев С.П. Проектирование электронно-оптических систем ЭВП О-типа с многоскоростным электронным пучком в режиме диалога с ЭВМ. Ч.2. Программа, примеры расчета// Морев С.П., Журавлева В.Д., Филатов В.А., Полищук Е.К., Кивокурцев А.Ю., Роговин В.И., Электронная техника, серия 1, Электроника СВЧ – 1990, вып.5(429) – с. 33 – 38

[18] Д.Н. Золотых, В.И. Роговин, «Проектирование замедляющих систем электровакуумных приборов СВЧ с длительным взаимодействием и анализ электродинамических характеристик», учебно-методическое пособие к лабораторным работам в интегрированном учебно-научном практикуме «Автоматизированное проектирование приборов СВЧ», 2016.

[19] Филатов В.А. Программа расчета в режиме диалога выходных характеристик, технического КПД и анализа устойчивости к самовозбуждению неоднородных спиральных ЛБВ. Электронная техника, серия 1, Электроника СВЧ. – 1990 – вып.3(427) – с. 73 – 74.

15

[20] Бушуев Н.А. Проектирование спиральной лампы бегущей волны и расчет выходных характеристик: Учебно-методическое пособие/ Бушуев Н.А., Роговин В.И., Семёнов С.О., Саратов: изд-во ГосУНЦ «Колледж», 2006, 56 с., ISBN 5-94409-052-9.

[21] Groiss S. et al. Parameters of lossy cavity resonators calculated by the finite element method //IEEE Transactions on Magnetics. $-1996. - T. 32. - N_{\odot}. 3. - C.$ 894-897.

[22] Xiao M. A. Modeling of conductor surface roughness effect. Urbana: University of Illinois at Urbana-Champaign. 2014.

[23] Chu Y. Method for modeling conductor surface roughness : пат. 8527246 США. – 2013.