МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики

Микромагнитное моделирование спиновых волн в магноннокристаллических структурах с дефектом

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студента 2 курса 2211 группы

направления 03.04.01 Прикладная математика и физика

Института физики

Кострикина Антона Валерьевича

Научный руководитель доцент, к.ф.-м.н.

А.В. Садовников

Зав. кафедрой нелинейной физики доцент, к.ф.-м.н.

Е.Н. Бегинин

Саратов 2023 г.

Оглавление

Введение	
Методы численного моделирования	5
Численные моделирования	6
Заключение	16
Список использованных источников	

Введение

Магноника - это перспективная область исследований в области наномагнетизма и нанонауки, которая занимается использованием спиновых волн (магнонов), распространяющихся В магнитных материалах, В перспективных системах обработки информационных сигналов с низким энергопотреблением на разных пространственных и временных масштабах [1]. По принципу корпускулярно-волнового дуализма, спиновые волны, одновременно, являются и частицами. Эти частицы получили название магнонов. Общие представления о спиновых волнах были введены Ф. Блохом в 1930 году[2]. Обработка данных на спиновых волнах является одним из перспективных направлений в области без зарядных схем будущего.Преимуществом спиновых волн для обработки данных являются: широкий диапазон частот, эффективные нелинейные магнонные явления, шины спиновой волны. Спиновая волна - это коллективное колебание спиновой системы в магнитной решетке. Он естественным образом заключен в магнитном носителе с нулевой вероятностью утечки в немагнитную среду. Эта особенность позволяет построить спиновую шину для передачи информации с использованием магнитных нанопроводов. [3-5]

Магнонный кристалл представляют собой магнитный аналог фотонных, фононных и плазменных кристаллов. Как и в любом кристалле, основным компонентом магнонного кристалла является периодическая модуляция потенциала спиновой волны. Согласно закону Брэгга и теореме Блоха, такая периодическая модуляция потенциала, следовательно, приводит к формированию структуры полосы спиновых волн. Главной особенностью магнонных кристаллов является наличие брэгговских резонансов, которые приводят к возникновению в спектре спиновых волн запрещенных зон для волновых чисел, удовлетворяющих условию Брэгга.[6]

3

Управление характеристиками запрещенных зон осуществляется посредством нарушения периодичности, изменения мощности входного сигнала и т. д. Наличие запрещенных зон в магнонном кристалле открывают широкие возможности использования магнонных кристаллов в СВЧустройствах для функциональной обработки сигналов на спиновых волнах, в том числе в СВЧ-фильтрах, для инверсии частоты, буферизации данных и т. д. [7]

Цель производственной преддипломной практики: рассмотреть пространственное распределение динамической намагниченности спиновой волны магнонных кристаллов дефектом и без дефекта. Рассмотреть влияние изменения периода, добавление дефекта и зазоров в магнонном кристалле на спектральные характеристики спиновой волны.

1. Методы численного моделирования

Для демонстрации подхода, основанного на том, что информационный сигнал обрабатывается с помощью спиновых волн в данной работе использовалась программа MuMax3. Т. е. сигнал кодируется в виде амплитуды и фазы спиновой волны. MuMax3 дает возможность решить проблемы и разрабатывать программы, связанные с изучением микромагнитных явлений.

MuMax3 — эта программа используется для решения задач, разработки программ и связанных с ними инструментов при исследовании микромагнитных явлений. В этом программном обеспечении можно найти пространственную и временную эволюцию намагниченности в нано- и микроструктурах с использованием метода конечных элементов. В MuMax3 производится микромагнитное моделирование путём решения уравнения Ландау - Лифшица с затуханием Гильберта методом конечных разностей.

Уравнение Ландау – Лифшица – Гильберта - уравнение, описывающее движение намагниченности в твердых телах. [8]

$$\frac{d\vec{M}}{dt} = -\gamma \times \left[\vec{H} \times \vec{M}\right] + \frac{\alpha}{M_0} \times \left[\vec{M} \times \frac{d\vec{M}}{dt}\right],$$
rde

- *M* вектор намагниченности (магнитный момент единицы объёма).
- *M*₀ спонтанная намагниченность ферромагнетика
- *а* безразмерный параметр потерь
- \vec{H} эффективное магнитное поле

$$\gamma = \frac{g_s \times |e|}{2 \times m_e \times c}$$
, где
 $g_s = 2,0023$
 e - заряд электрона

с – скорость света

MATLAB — это высокоуровневый язык и интерактивная среда для программирования, численных расчетов и визуализации результатов. С помощью MATLAB можно анализировать данные, разрабатывать алгоритмы, создавать модели и приложения. [9]

2.Численные моделирования

В данной магистерской работе были рассмотрены моделирования одиночных магнонных кристаллов с дефектом.

Рисунок 1 – Схема магнонного кристалла

На рисунке 1 схематически приведен магнонный кристалл с дефектом с определенными параметрами. Длина волновода равняется b = 6000 мкм, а ширина с = 500 мкм. Глубина ямок изменялась от а = 40 до 80 мкм. Период магнонного кристалла равняется T = 160 мкм и T= 320 мкм. Ширина зазора q= 0, 15 и 30 мкм. Длина дефекта d= 500 мкм. Микрополосковая антенна, с по мощью которой волна возбуждается, обозначена буквой т. Н направление ма гнитного поля.

На рисунках 2, 3 представлены спектры прохождения спиновой волны в магнонном кристаллах с дефектом, с периодом T= 160 мкм, глубиной ямок a= 80 мкм и шириной зазора q= 15 и 30 мкм.

Рисунок 2 – (МК) Спектр прохождения спиновой волны в магнонном кристалле с дефектом с периодом T= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 15 мкм.

Рисунок 3 – (МК) Спектр прохождения спиновой волны в магнонном кристалле с дефектом с периодом T= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 30 мкм.

На рисунках 2, 3 наблюдается широкая полоса непропускания в диапазоне частот 5,29-5,37 ГГц, которая, при увеличении ширины зазора, становится глубже. При ширине зазора 30 мкм начинает проявляться дефектная мода на частоте 5,32 ГГц.

На рисунках 3, 4 представлено пространственное распределение динамической намагниченности(левая колонка) и интенсивности(правая колонка) спиновой волны с периодом T= 160 мкм и глубиной ямок а= 80 мкм с шириной зазора q= 15, 30 мкм.

Рисунок 3– (МК) Пространственное распределение динамической намагниченности (левая колонка) и интенсивности (правая колонка) спиновой волны на частоте входного сигнала 5,3 ГГц, периодом Т= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 15 мкм.

Рисунок 4– (МК) Пространственное распределение динамической намагниченности (левая колонка) и интенсивности (правая колонка) спиновой волны на частоте входного сигнала 5,3 ГГц, периодом T= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 30 мкм.

На рисунке 5, 6 представлен спектр прохождения спиновой волны в магнонном кристалле с дефектом, с периодом T= 320 мкм, глубиной ямок a= 40 мкм и шириной зазора q= 15, 30 мкм.

Рисунок 5 – (МК) Спектр прохождения спиновой волны в магнонном кристалле с дефектом с периодом T= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 15 мкм.

Рисунок 6 – (МК) Спектр прохождения спиновой волны в магнонном кристалле с дефектом с периодом T= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 30 мкм.

При увеличении ширины зазора до 15 и 30 мкм провал становится более глубоким и начинается проявляться дефектная мода на частоте 5,23 ГГц.

На рисунках 7, 8 представлено пространственное распределение динамической намагниченности(левая колонка) и интенсивности(правая колонка) спиновой волны с глубиной ямок а= 40 мкм, периодом T= 320 мкм и шириной зазора q= 15, 30 мкм.

Рисунок 7– (МК) Пространственное распределение динамической намагниченности (левая колонка) и интенсивности (правая колонка) спиновой волны на частоте входного сигнала 5.22 ГГц, периодом Т= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 15 мкм.

Рисунок 8– (МК) Пространственное распределение динамической намагниченности (левая колонка) и интенсивности (правая колонка) спиновой волны на частоте входного сигнала 5.22 ГГц, периодом T= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 30 мкм.

Видно, что при частоте 5,22 ГГц наблюдается плохое затухание волны, и чем больше ширина зазора, тем быстрее затухает волна, что соответствует АЧХ для данного волновода.

Рисунок 9 – Схема магнонного кристалла Т-формы.

На рисунке 9 схематически приведен магнонный кристалл Т-формы с определенными параметрами. Длина МК равняется b = 6000 мкм, а ширина с = 3000 мкм. Глубина ямок изменялась от a = 40 до 80 мкм. Период магнонного кристалла равняется T = 160 мкм и T= 320 мкм. Ширина зазора q= 0, 15 и 30 мкм. Ширина входа МК f= 500 мкм. Длина дефекта d= 500 мкм.

На рисунках 10, 11 представлены спектры прохождения спиновой волны в магнонных кристаллах Т-формы, с периодом T= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 0, 15 и 30 мкм.

Рисунок 10 – (МК Т-формы) Спектр прохождения спиновой волны в магнонном кристалле с дефектом с периодом T= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 15 мкм.

Рисунок 11 – (МК Т-формы) Спектр прохождения спиновой волны в магнонном кристалле с дефектом с периодом T= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 30 мкм. На рисунках наблюдаются широкие диапазоны полос непропускания.

На рисунках 12, 13 представлено пространственное распределение динамической намагниченности(левая колонка) и интенсивности(правая колонка) спиновой волны с периодом T= 160 мкм и глубиной ямок а= 80 мкм с шириной зазора q= 15, 30 мкм.

Рисунок 12– (МК Т-формы) Пространственное распределение динамической намагниченности (левая колонка) и интенсивности (правая колонка) спиновой волны на частоте входного сигнала 5,2 ГГц, периодом Т= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 15 мкм.

Рисунок 13– (МК Т-формы) Пространственное распределение динамической намагниченности (левая колонка) и интенсивности (правая колонка) спиновой волны на частоте входного сигнала 5,35 ГГц, периодом Т= 160 мкм, глубиной ямок а= 80 мкм и шириной зазора q= 30 мкм.

На рисунке 12 при частоте 5,2 ГГц волна распространяется хорошо, постепенно затухая в нижней части МК, что соответствует провалу на АЧХ. На рисунке 13 при частоте 5,35 ГГц волна, дойдя до дефектной зоны, затухает.

На рисунках 14, 15 представлены спектры прохождения спиновой волны в магнонных кристаллах Т-формы, с периодом T= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 15 и 30 мкм.

Рисунок 14 – (МК Т-формы) Спектр прохождения спиновой волны в магнонном кристалле с дефектом с периодом T= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 15 мкм.

Рисунок 15 – (МК Т-формы) Спектр прохождения спиновой волны в магнонном кристалле с дефектом с периодом T= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 30 мкм. На рисунке 14 наблюдается неглубокий провал на частоте 5,25 ГГц для выхода р1. При увеличении ширины зазора провал становится глубже.

На рисунках 16, 17 (МК Т-формы) представлено пространственное распределение динамической намагниченности(левая колонка) и интенсивности(правая колонка) спиновой волны с периодом T= 320 мкм и глубиной ямок а= 40 мкм с шириной зазора q= 15, 30 мкм.

Рисунок 16– (МК Т-формы) Пространственное распределение динамической намагниченности (левая колонка) и интенсивности (правая колонка) спиновой волны на частоте входного сигнала 5,25 ГГц, периодом Т= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 15 мкм.

Рисунок 17– (МК Т-формы) Пространственное распределение динамической намагниченности (левая колонка) и интенсивности (правая колонка) спиновой волны на частоте входного сигнала 5,25 ГГц, периодом Т= 320 мкм, глубиной ямок а= 40 мкм и шириной зазора q= 30 мкм.

На рисунках видно, что волна постепенно затухает, что соответствует АЧХ. На рисунке 18 представлена дисперсионная характеристика магнонного кристалла с периодом T= 160 мкм и глубиной ямок а= 80 мкм.

Рисунок 18 - Дисперсионная характеристика магнонного кристалла с периодом T= 160 мкм и глубиной ямок а= 80мкм..

На рисунке 18 видно, что волна в волноводе начинает распространяться на частоте 5,13 ГГц. На дисперсии наблюдаются встречные волны. На рисунках дисперсии, при пересечении основной моды со встречной волной наблюдаются провалы на АЧХ при той же частоте.

Заключение

В ходе магистерской работы была рассмотрена динамика распространения спиновой волны в волноводах, в магнонных кристаллах с дефектом и без дефекта;

Было показано влияние периода и глубины модуляции (размеров «ямок») на амплитудно-частотные характеристики спин-волнового сигнала на разных выходах (портах, выходных антеннах) рассматриваемых структур.

Было получено, что при добавлении дефекта и увеличении ширины зазора в магнонных кристаллах, наблюдается увеличение глубины запрещенных зон на амплитудно-частотных характеристиках сигнала.

На основе построенной дисперсионной характеристики выявлено значение частоты, на которой начинает распространяться волна. Были выявлены частоты при которых определяется существование полос непропускания в спектрах спиновой волны.

Получено, что полоса непропускания может составлять величину от 25 до 100 МГЦ при частотах входного сигнала в области 5 ГГц.

Список использованных источников

- 1. Holstein T and Primakoff H, Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet, 1940 Phys. Rev. 58 1098.
- 2. Bloch F, ZurTheorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika, 1932 Z. Phys. 74 295.
- A. Khitun and K. L. Wang, "Nano scale computational architectures with Spin Wave Bus," Superlattices and Microstructures, vol. 38, pp. 184-200, Sep 2005. DOI: 10.1016/j.spmi.2005.07.001.
- B. Heinz, T. Brächer, M. Schneider, Q. Wang, B. Lägel, A. M. Friedel, D. Breitbach, S. Steinert, T. Meyer, M. Kewenig, C. Dubs, P. Pirro, and A. V. Chumak, Propagation of coherent spin waves in individual nano-sized yttrium iron garnet magnonic conduits, Nano Letters 20, 4220 (2020), DOI: 10.1021/acs.nanolett.0c00657.
- 5. Q. Wang, M. Kewenig, M. Schneider, R. Verba, F. Kohl, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, S. D. Cotofana, O. V. Dobrovolskiy, T. Brächer, P. Pirro and A. V. Chumak, "A magnonic directional coupler for integrated magnonic half-adders", Nat. Electr. 3, 765 (2020).
- A. Mahmoud, F. Ciubotaru, F. Vanderveken, A. V. Chumak, S. Hamdioui, C. Adelmann and S. Cotofana, "An introduction to spin wave computing (Tutorial Article)", J. Appl. Phys. 128, 161101 (2020).
- 7. Chumak A V, Serga A A, Hillebrands B J. Phys. D 50 244001 (2017).
- А.В.Вашковский, В.С.Стальмахов, Ю.П.Шараевский, Магнитостатические волны в электронике сверхвысоких частот, М.: Издательство Саратовского университета, 1993.