МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

Кафедра спортивных дисциплин

«ВЛИЯНИЕ ТРЕНИРОВОЧНОЙ ИНТЕНСИВНОСТИ НА РЕЗУЛЬТАТ ЗИМНИХ ТРИАТЛЕТОВ»

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 402 группы направление подготовки 44.03.01 Педагогическое образование профиль «Физическая культура»

Факультет физической культуры и спорта

Закутина Семёна Михайловича

Научный руководитель

Доцент, кандидат педагогических наук

В.Н. Мишагин

Зав. Кафедрой

Доцент, кандидат педагогических наук

В.Н. Мишагин

Распределение интенсивности в каждом сегменте зимнего триатлона Интенсивность и её маркеры

Интенсивность в тренировках — это уровень усилий, которые вы прикладываете во время тренировки. Для правильного построения тренировочного процесса нужно распределять нагрузку в зависимости от текущих задач. Тренировки в разные периоды подготовки должны отличаться, поэтому стали дифференцировать нагрузку. Отсюда и появилось 3 типа интенсивности - низкая, средняя и высокая.

Во время тренировок в низкой интенсивности организм спортсмена учится снабжать мышцы кислородом на протяжении длительного времени, улучшает показатели лёгких и капиллярной сети, увеличивает ударный объем сердца и использование жиров в качестве энергии. Такие тренировки могут длится от 30 минут и до 5 часов. В зависимости от того, какую цель преследуете на данной тренировке.

Средняя интенсивность обычно проходит в формате интервальной тренировки, но бывает и как равномерная нагрузка, например - темповая таких тренировок увеличивается тренировка. время максимального потребления кислорода МПК, улучшается техническая оснащённость, ЧТО приводит К более экономичному передвижению. Улучшается производительность сердца и лёгких, локальная мышечная выносливость. Их длительность составляет от 50 минут до двух часов в зависимости от подготовки спортсмена.

Высокая интенсивность - тренировки в данной зоне приближены к соревновательному темпу или превосходят его. Во время такой работы все системы человека максимально нагружены, что приводит к увеличению ударного объёма крови, $M\Pi K$, анаэробной производительности преобразования сопротивляемости, энергии условиях ограниченного В потребления кислорода. Работа в такой интенсивности длится примерно от 20 до 50 минут.

Для контроля интенсивности использовалось большое количество методов и тестов. В данный момент времени самыми лучшими маркерами интенсивности являются контроль частоты сердечного сокращения ЧСС, лактат и измерение мощности.

ЧСС для контроля интенсивности используется повсеместно, от профессиональных спортсменов до обычных любителей. Пульс - это количество ударов сердца за определённый промежуток времени. Пульс предсказуемо изменяется вместе с изменением интенсивности упражнения и его просто измерять. Поскольку у каждого человека свой уникальный организм, поэтому для эффективного тренировочного процесса нужно определить пульсовые зоны соответствующие той или иной интенсивности. Есть несколько методов соотношения интенсивности и пульса:

- 1. Расчётный метод. Для расчёта границ каждой зоны используется формула: 220 возраст \times на % зоны, где низкая интенсивность от 50% до 70%, средняя от 70 до 80% и высокая от 80% до максимального ЧСС .
- 2. Метод Карвонена. Финский физиолог предложил рассчитывать интенсивность тренировки от ЧССрезерва, который определяется как ЧССмакс ЧССпокоя. Ученный представил следующую формулу ЧССпокоя + ЧССрезерв × (% подходящий из предыдущего метода).
- 3. Разговорный метод. Заключается в определении возможности петь или вести разговор во время тренировки. При низкой интенсивности во время занятия можно петь, при средней поддерживать разговор, а при высокой и вовсе не сможешь связанно разговаривать.
- 4. Ступенчатый тест. Самый эффективный и точный способ определения пульсовых зон это ступенчатый тест с использованием газоанализатора на беговой дорожке в спортивной лаборатории. Также его называют тредмил-тестом или нагрузочным тестом.
- 5. Метод, основывающийся на ощущениях. Профессиональные спортсмены, тонко чувствующие свой организм, могут рассчитать зоны по своим ощущениям. Для этого надо во время тяжёлой, высокоинтенсивной тренировки почувствовать анаэробный порог и посмотреть на каком ЧСС он был. Лично у меня он сопровождается легким покалыванием в диафрагме. А дальше просто рассчитать.

Конечно, некоторые методы условные, лучше всего прибегнуть к ступенчатому тесту. Он поможет точнее рассчитать зоны ЧСС, но стоит помнить, что даже тест не может точно определить интенсивность. Каждый организм уникален и зоны интенсивности могут плавать из-за меняющихся условий. Например, из-за смены погоды, плохого ночного сна и так далее.

Лактат – молочная кислота, которая образуется в результате расщепления глюкозы в тканях. Многие тренеры и физиотерапевты начали использовать анализ лактата в крови спортсменов для определения и контроля его интенсивности. Лактат, не смотря на его значимую роль для человеческого организма, является малоизученным веществом. Многие годы считалось, что лактат это просто отход, который получается в результате анаэробных упражнений. Как мы знаем, сейчас это не соответствует действительности.

Доктор George Brooks посветил более 40 лет изучению лактата. Благодаря ему мы знаем, что образование лактата может происходить как при аэробных, так и при анаэробных нагрузках. Появляется лактат в организме в результате утилизации глюкозы мышечными клетками. Также из работы доктора нам известно, что лактат не является отходом. Фактически лактат является источником энергии, так как около 30% глюкозы, которой мы используем во время тренировок, образуется во время переработки лактата. Лактат является регулятором липолиза и гликолиза.

Как говорилось раннее, лактат - это продукт расщепления глюкозы. Чем больше глюкозы поступает в клетку, тем выше производство лактата. Во время высокоинтенсивных тренировок задействываются быстрые мышечные волокна,

которые потребляют много глюкозы. Это приводит к появлению большого количества лактата. Во время нагрузки лактата в несколько раз больше, чем в состоянии покоя.

Основываясь на многочисленных тестах и исследованиях учёные пришли к выводу, что лактатный порог или порог анаэробного обмена ПАНО находится на уровне 4 моль на литр, а аэробный порог на 2 моль на литр. Следовательно низкая интенсивность находится в диапазоне концентрации лактата от 0,5 до 2 моль на литр, средняя от 2 до 4 моль на литр и высокая от 4 и выше.

В велогонках для контроля интенсивности используют измерители мощности. Они измеряют усилие, которое велосипедист создаёт во время езды. Большинство измерителей мощности относятся к DFPM - устройствам (измеритель мощности прямого воздействия). Они напрямую измеряют приложенные усилия с помощью тензометров, которые фиксируют деформацию и напряжение в местах, куда прилагается усилия. Такие датчики могут располагаться в педалях, шатунах, пауке системы, звёздах, каретке, задней втулке и даже в педальных шипах. Сигнал из датчиков идёт на велосипедный компьютер или спортивные часы, на которых показывается мощность, измеряемая в ваттах.

Для того. чтобы контролировать интенсивность с помощью мощности, нужно пройти ступенчатый тест на велотренажере. Также, как и в беге, в этом тесте будет постепенное увеличение скорости, а также будут проводиться замеры потребления кислорода, лактата и мощности для вычисления зон интенсивности. После теста вычисляется аэробный и анаэробный порог, и сопоставляется с ними мощность, прикладываемая в этот момент спортсменом. Таким образом, находится граница мощности низкой, средней и высокой интенсивности.

Самым лучшим методом для контроля интенсивности считается измерение лактата, но он доступен не всем, так как оборудование для замеров очень дорогое и существует мало специалистов, умеющих правильно измерять и анализировать количество лактата. Измерение мощности подходит только велосипедистам, и оно также, как и измерение ЧСС, относительно и имеет погрешности. Для более правильного подхода контроля интенсивности нужно использовать все методы вместе.

Распределение интенсивности в беге

В начале 21-го века спортивный учёный из США, Стивен Сейлер, начал изучать бегунов высочайшего уровня, чтобы понять как правильно распределять интенсивность. Он брал и анализировал данные тренировок лучших спортсменов. Когда Сейлер собрал воедино все тренировки и рассчитал фактическое время, проведённое с разной нагрузкой, он увидел, что примерно 80% нагрузки приходилось на низкую интенсивность.

В следующем исследовании Стивен Сейлер, вместе с Джонатаном Эстив-Ланао, набрали 12 молодых парней возраста от 25 до 29 лет, у которых

результат на 10 км колебался от 30 до 35 минут. Дальше они разделили их на две группы и провели контрольный замер результатов на 10-ти километровой гонке. Первая - показала результат со средним временем 37:51, а вторая - 37:29. После теста обе группы в течении 5 месяцев выполняли одинаковый объем, но интенсивность была поделена по-разному. У первой - 65% нагрузки были в низкой интенсивности, а 35% в средней и высокой, у второй - 80% низкой и 20% средней и высокой. По окончанию эксперимента была проведена контрольная тренировка на той же дистанции. У первой группы среднее время снизилось до 35:50. Это улучшение на 2:01 или на 5.3%. У второй снизилось до 34:52. Это улучшение на 2:37 или на 7%. Разница в улучшении на 2:01 и 2:37 составляет 30%, что очень существенно по меркам бегунов, участвующих в соревнованиях. Это исследование подтвердило гипотезу Стивина Сейлера, о том, что при беге нужно распределять интенсивность 80 на 20 для достижения наилучшего прогресса.

Стивен Сейлер и Джонатан Эстива-Ланао дали ответ о том сколько времени тренировочного объёма надо проводить в низкой интенсивности, а именно примерно 80%. Но остался открытым вопрос: как разделить среднюю и высокую интенсивность? На этот вопрос попытались ответить Томас Штогль из Университета Зальцбурга и Билли Шперлих из Университета средней Швеции. Они предполагали, что лучше всего использовать поляризованную систему распределения интенсивности, вместо пирамидальной.

Отличие поляризованной системы от пирамидальной в том, что в них поразному распределена средняя и высокая интенсивность. В пирамидальной средний тип нагрузки преобладает над высоким, а в поляризованной наоборот больше тренировок в высокой интенсивности. Но низкая интенсивность в обоих системах является основополагающей и преобладает в несколько раз над средней и высокой. Пример разделения объёма в пирамидальной и поляризованной системе видно в диаграмме 2.1.

Объектами исследования Штогль и Шперлих были 48 атлетов. Вместо проверки двух тренировочных режимов учёные сравнивали четыре. Все атлеты были разделены на четыре группы, каждая из которых готовилась девять недель с разными объёма и интенсивности тренировок. Группа с высокими объёмами провела 83% тренировок с низкой интенсивностью, 16% - со средней и 1% - с высокой. «Пороговая» группа выполнила 46% тренировок с низкой интенсивностью, 54% - со средней и 0% - с высокой. « Высокоинтенсивная» группа тренировалась 43% времени с низкой интенсивностью, 0% - со средней и 57% - с высокой. Наконец, «поляризованная» группа провела 68% времени, тренируясь с низкой интенсивностью, 6% - со средней и 26% - с высокой. Чем больше группа занималась с высокой и/или средней интенсивностью, тем меньше был объём, чтобы нагрузка во всех группах была примерно одинаковой.

Перед началом девяти недельной программы все атлеты выполнили тест, который заключался в беге по беговой дорожке с возрастающей скоростью, продолжающийся до отказа - ступенчатый тест. Начальная скорость была низкой - 7,25 км/ч - увеличивалась на 1,61 км/ч каждые 30 секунд до тех пор, пока спортсмен продолжать бег. Ученные отмечали, сколько каждый бегун продержался и какой максимальной скорости достиг. Такой же тест они провели в конце тренировочного периода.

По итогам заключительного теста выяснилось. что наибольший прирост во времени и пиковой скорости был у «поляризованной группы». Увеличение продолжительности теста у «поляризованной» группы составило 17,4%, против 8% у группы с большим объёмом, 6,2% у «пороговой» группы и 8,8% группы с высокой интенсивностью. А изменение пиковой скорости у «поляризованной» группы составило 5,1%, у группы с высокой интенсивностью - 4,4%, у «пороговой» - 1,8%, а у группы с большими объёмами, наоборот, уменьшилась на 1,5%.

О чем нам говорят результаты исследования Штогля и Шперлиха? О двух вещах: во первых, тренировки с высокой интенсивностью обязательны, но их нужно немного - в данном случае небольшое количество даёт большой результат. Две группы, избегающие высокую интенсивность, показали наименьший прогресс. Другой важный урок, вынесенный из этого исследования, заключается в том, что спортсмены обычно получают больше пользы, проводя больше тренировок в низкой интенсивности, чем от тренировок в средней интенсивности. У участников «поляризованной» группы был более сильный дисбаланс между лёгкими и средними нагрузками, и все равно они прогрессировали больше других.

Вы могли заметить, что «поляризованная» группа провела 68% времени в низкой интенсивности и это значительно меньше 80. Пусть этот факт не вводит вас в заблуждение, так как планировалось, что у них будет 78% низкой интенсивности, но некоторые спортсмены вылезали с низкой в среднюю интенсивность и из-за этого появился дисбаланс. Однако, один атлет из «поляризованной» группы провёл 80% нагрузки в низкой интенсивности, и у него был самый большой прогресс.

А как же распределяется интенсивность беговой нагрузки в зимнем триатлоне? Для того чтобы ответить на этот вопрос, я взял тренировочные планы Рогозиной Дарьи и Честикова Олега в сезоне 2024-2025 года. Дарья и Олег в этот сезон стали чемпионами мира в зимнем триатлоне. А также я проанализировал свои тренировки в сезон 2021-2022 года. В этот период мне было 18 лет. На мой взгляд этот сезон был лучшим, так как я стал призёром Первенства Мира и Первенства России и чемпионом Европы. Хочется отметить, что все все спортсмены данного исследования входят в состав сборной России по зимнему триатлону. Тренером сборной с 2019 года и по сей день является Кириллов Евгений.

Чтобы ответить на поставленный вопрос о разделении нагрузки в зимнем триатлоне, я взял тренировочные дневники всех объектов исследования и начал

подсчитывать интенсивность в каждом месяце и за год в целом, а затем произвёл анализ. В диаграммах 2.2, 2.3 и 2,4 видна интенсивность Рогозиной Дарьи, Честикова Олега и Закутина Семёна соответственно, расписанная по месяцам.

У Дарьи годовой объём бега составил 232 часа. За сезон не было травм и болезней. По диаграмме 2.2 видно, что у Дарьи объем низкой интенсивности преобладает над средней и высокой и колеблется в районе 80%. Высокая интенсивность выше средней, но в некоторые месяцы наоборот, а именно: в апреле, мае и октябре.

Объем беговой нагрузки у Олега равен - 258 часов. В течении летней подготовки у него случилась небольшая травма спины, из-за которой он пропустил 3 дня, но на тренировочный процесс она практически не повлияла. Все данные Олега схожи с Дарьиными, а именно: низкая интенсивность преобладает над высокой и средней, а высокая, в свою очередь, над средней, так как они вели совместную подготовку в сборной России. Все вышеперечисленное отображено на диаграмме 2.3

Я в сезоне 2021-2022 выполнил 128 часов беговой нагрузки. В октябре случилась болезнь, подхватил ОРВИ и выбыл из строя на неделю. Подготовка строилась под контролем Кириллова Евгения, поэтому распределение интенсивности схожа с Дарьей и Олегом. Низкая интенсивность в несколько раз больше средней и высокой. Высокая преобладает над средней за исключением двух месяцев: апреля и мая. Хочется отметить, что у меня больше высокоинтенсивных тренировок по сравнению с Дарьей и Олегом. Это связано с тем, что общий объём меньше, так как в тот период времени я являлся юниором, и поэтому для наибольшего прогресса выполнялось больше тренировок с высокой интенсивностью. Следующим шагом был подсчёт интенсивности за весь тренировочный сезон. Результат был следующим - у Дарьи 183,3 часа или 79% низкой интенсивности, 18,6 часов или 8% средней и 30,1 час или 13% высокой, у Олега 209 часов или 81% низкой интенсивности, 18 часов или 7% средней и 31 час или 12% высокой, у меня 98,5 часов или 77% низкой, 9 часов или 7% средней и 20,5 часов или 16% высокой. После вычисления всех данны видно, что у всех объектов исследования примерно схожее распределение интенсивности. Весной низкая интенсивность больше, чем летом, потому что в начале подготовки, а именно в апреле и мае, идёт разгрузка после соревновательного сезона и подготовка к следующему периоду. Летом происходит рост высокой и средней интенсивности, так как идёт подготовка к соревнованиям, которые проходят в сентябре, а именно: кросс-дуатлон и кросс-триатлон. В сентябре вырастает высокая интенсивность. В октябре опять увеличивается низкая интенсивность, а средняя и высокая уменьшается, потому что это восстановительный месяц. В ноябре и декабре опять увеличивается высокая и низкая интенсивность, потому что это подготовительный период. в январе феврале и марте проходят все основные соревнования, например Чемпионат России, чемпионат мира и Европы, поэтому становится больше высокой интенсивности, а низкая уменьшается.

Независимо от периода подготовки низкая интенсивность преобладает над средней и высокой и приблизительно равна 80%. Это значит, что беговая подготовка зимних триатлетов строится на правиле 80 на 20, которое разработал Стивен Сейлер.

У моих объектов исследования почти всегда высокая интенсивность была больше средней. Это значит, что подготовка строилась по поляризованной методике. Но хочется отметить, что в апреле, мае и октябре средняя интенсивность была больше высокой. Только у меня в октябре высокая интенсивность была больше средней, потому что я заболел и пропустил одну неделю, в которой были несколько тренировок в средней зоне и вовсе не было высокоинтенсивных занятий. В эти месяцы проходил восстановительный этап подготовки, а для восстановления мышц и центральной нервной системы мы сокращали объем и сильно уменьшали высокую интенсивность.

Подводя итог, можно с уверенностью сказать, что беговая интенсивность у зимних триатлетов строится по правилу 80 на 20 с поляризованной системой распределения средней и высокой интенсивности, которая уже давно зарекомендовала себя и является наилучшей для подготовки спортсменов мирового класса.

Распределение интенсивности в велогонках

В работах Стивена Сейлера есть предположение о том, что правило 80 на 20 может работать не только в беге, но и в других видах спорта. Эта мысль подтолкнула Августо Запико к проведению исследования на испанских велогонщиках. Он со своими коллегами из Мадридского университета анализировал тренировки испанских велогонщиков моложе 23 лет на протяжении двух периодов продолжительностью по 4 месяца каждый. В начале и в конце каждого периода проводился ступенчатый тест. За первый период объём лёгких тренировок составил 78%, и велосипедисты показали улучшение результатов на тестировании. Во второй период соответствующий объём составил лишь 70%, и улучшений не было. А это говорит о том, что правило 80 на 20 может действовать и в велогонках.

Хочу также осветить известного тренера, который внёс неоценимый вклад в развитие велоспорта - Джо Фрил. Он работает тренером более 40 лет и тренирует спортсменов всех уровней. Также Джо написал несколько популярных книг о тренировках на выносливость, например: «Библия тренировок велосипедиста», «Библия тренировок триатлета», «Быстро после 50» и другие. Его книги считаются одними из самых авторитетных ресурсов для спортсменов и тренеров. Джо Фрил известен своим научным подходом к тренировкам. Он - приверженец использования данных, таких как: показатели мощности, ЧСС и переменчивость сердечного ритма для мониторинга прогресса, корректировки планов и оценки восстановления.

В книге «Библия тренировок велосипедиста» Джо Фрил не упоминает правило 80 на 20, но ,затрагивая тему распределения интенсивности, говорит о

том, что большая часть объёма должна быть в низкой интенсивности. В разные периоды подготовки количество медленных тренировок у него варьируется от 90% до 70%, но в общем, примерно, равно 80%. Такой подход он объясняет тем, что для улучшения общей выносливости требуется большой объём тренировок, а переносить его, в свою очередь, проще, если тренировки медленные. Что касаемо высокой и средней интенсивности - Джо признавал её необходимость для улучшения максимальной мощности, лактатного порога и скорости, но предостерегал от чрезмерного использования, дабы избежать перетренировки и травм.

Последователем тренировочной модели Джо Фрила является Евграфов Евгений. Он - член сборной России по маунтибайку, многократный призёр и победитель чемпиона России по маунтибайку в различных категориях, а также успешно выступает в зимнем триатлоне, где я с ним и познакомился. Евгений родился 28 августа 1998 года в Чебоксарах, Чувашская республика. Свой путь в спорте Евгений начинал с дзюдо, но борьба ему не понравилась, его привлекала езда на велосипеде. Сначала он просто катался и выступал на любительских соревнованиях. В 2015 году тренер Алексей Семёнов заметил и позвал Евгения в спортивную школу. Так началась его профессиональная карьера. Успехи не заставили долго ждать, и уже в 2016 году он стал победителем республиканских соревнований в юниорской категории по маунтибайку. В 2018 году тренер Евгения познакомил его с Павлом Андреевым, который предложил ему принять участие в первенстве России по кросс-дуатлону. И Евгений выиграл его, а чуть позже стал призёром первенства России по зимнему триатлону. С 2020 года Евгений тренируется один, без тренера. Самостоятельно пишет тренировочные планы и во многом он опирается на модель тренировок Джо Фрила. За последние 3 года Евгений сильно преуспел в маунтибайке несколько раз стал Чемпионом России, выигрывал международные соревнования.

Для определения наилучшей тренировочной модели в маунтибайке я решил проанализировать тренировки Евграфова Евгения. Он предоставил данные о всех своих тренировках в сезонах 2022-2023, 2023-2024 и 2024-2025. Общий объём в каждом из сезонов составил 1083 часа, 1157 часов и 1108 часов соответственно. По словам Евгения он планировал увеличивать объем примерно на 50 часов в год, но в сезоне 2024-2025 он получил травму, из-за которой у него выпало 2 недели подготовки. Я вычислил сколько из всего объёма было тренировок на велосипеде, и они составили 899 часов или 83%, 948 часов или 82% и 944 часа или 86%. Все остальные тренировки проводились на лыжах или бегом. Затем я посчитал интенсивность в каждом месяце всех сезонов и внёс их в диаграммы 2.5, 2.6 и 27.

При анализе интенсивности в пером сезоне можно увидеть, что подготовка Евгения была направлена на соревнования, которые проходили в августе, так как с марта и до августа постепенно снизилась низкая интенсивность и росла высокая, достигая своего максимума в августе. На протяжении всего сезона низкая интенсивность была в разы больше высокой и колебалась на уровне

80%, а высокая, в свою очередь, доминировала над средней за исключением пары месяцев - марта и апреля. А также мы наблюдаем снижение низкой интенсивности в январе и феврале в эти месяцы Евгений выступал на соревнованиях по зимнему триатлону, но при этом лёгкие тренировки не так сильно проседают, как в летней подводке к соревнованиям.

В сезоне 2023-2024 мы наблюдаем аналогичную картину, как и в сезоне 2022-2023. Единственное расхождение в том, что летняя подготовка направлена на достижение своего пика в сентябре. В мае сезона 2024-2025 Евгений получил травму, поэтому для достижения результата он увеличил количество низкой интенсивности в следующем месяце. Для того, чтобы увеличить объем, но при этом не перетренироваться. Подготовка в этом сезоне была направлена на достижение пика формы в августе. Также в диаграмме 2.7 видно увеличение высокой интенсивности в январе и феврале, это спровоцировано подготовкой к зимним стартам. Если подсчитать всю интенсивность за сезон 2022-2023, то мы получим следующие результаты: низкая интенсивность - 83%; средняя - 6%; высокая - 11%. В сезоне 2023-2024: низкая интенсивность составила - 82%; средняя - 7%; высокая - 11%. В сезоне 2024-2025: низкая - 84%; средняя - 6%; высокая - 10%. Проанализировав все 3 сезона, можно увидеть, что низкая интенсивность преобладает над высокой и средней в подготовке Евграфова Евгения. Она составляет приблизительно 80% от общего объёма тренировок, а это значит, что подготовка велась по правилу 80/20, и доказывает, что Стивен Сейлер был прав в том, что его методика распространяется на велоспорт. В свою очередь, высокой интенсивности практически всегда больше, чем средней. Это означает, что подготовка ведётся по поляризованной системе тренировок. Интересный факт: по словам Евгения, самый успешный сезон был 2023-2024. А в этот сезон низкая интенсивность была ближе всех к показанию 80%.

Далее рассмотрим распределение велонагрузки у исследуемых триатлетов. Для анализа были подсчитаны все велотренировки в каждом месяце, году и распределены по зонам интенсивности.

В диаграмме 2.8 изображено распределение интенсивности по месяцам Рогозиной Дарьи. В этой диаграмме видно, что низкая интенсивность варьируется на уровне 80%, при этом от апреля до сентября идёт её снижение. Это вызвано набором формы перед осенними соревнованиями по кроссдуатлону, которые будут проходить в конце сентября. Затем снова низкая интенсивность увеличивается, и получается вторая волна подготовки, направленная на зимние соревнования, проходящие в январе и феврале. При этом высокая интенсивность, наоборот, растёт по мере снижения низкой. Средняя интенсивность практически всегда на одном уровне, кроме соревновательных месяцев - сентябрь, январь, февраль и частично март. Также как и в беге практически всегда высокая интенсивность выше средней, кроме апреля, мая и октября.

Поскольку все ключевые соревнования для зимних триатлетов проводятся в одно и тоже время, поэтому мое распределение интенсивности схоже с интенсивностью Дарьи и Олега, а конкретно тем, что от апреля к сентябрю идёт плавное снижение низкой интенсивности и при этом - рост высокой. Это вызвано набором формы к сентябрьским соревнованиям, а в частности - кроссдуатлон. При этом средняя интенсивность остаётся на одном уровне и только ближе к соревнованиям снижается. Затем идёт вторая волна подготовки, направленная на зимние соревнования в январе и феврале. Для подведения итога я посчитал и распределил весь объём интенсивности велотренировок объектов исследования за весь сезон и полученные данные записал в таблицу 2.3. За год Дарья выполнила 285 часов, Олег 325 часов и я 123 часа. Низкая интенсивность у Дарьи равна 236,6 часов или 83%; у Олега 266,5 часов или 82% и у меня 98,4 часа или 80%. Объём средней интенсивности у Дарьи равен 17,1 часов или 6%; у Олега 19,5 часов или 6% и у меня 8,6 часов или 7%. Высокая интенсивности было у Дарьи 31,3 часов или 11%; у Олега 39 часов или 12% и у меня 16 часов или 16%. На основании все данных можно с уверенностью сказать, что Стивен Сейлер был прав в том, что принцип 80 на 20 можно использовать и в велогонках. Ведь этим правилом, хоть и не напрямую, руководствовался Евграфов Евгений, выстраивая свою подготовку. Он знаменитого тренера опирался на знания Джо Фрила, пропагандировал выполнения большего объёма в низкой интенсивности для достижения наилучшего результата. И по результатам анализа тренировок Рогозиной Дарьи, Честикова Олега и Закутина Семёна видно, что их подготовка строилась по принципу 80/20, так как соотношение низкой и средней с высокой интенсивностью в каждом месяце и за год в целом, приблизительно, была равна 80 на 20. А также стоит отметить, что соотношение высокой и средней интенсивности было в пользу высокой, но не во всех месяцах. В апреле, мае и октябре у Дарьи, Олега, Евгения и Семёна тренировок в средней интенсивности было больше. Это связано с тем, что в эти месяцы идёт восстановительный период, и для того, чтобы отдохнуть физически и морально соревновательного периода, спортсмены уменьшают объём в целом и объём высокой интенсивности.

Распределение интенсивности в лыжных гонках

Лыжные гонки в наше время ассоциируются с конкуренцией двух стран - Норвегии и России. На двоих они собирают на международных соревнованиях больше медалей, чем все остальные. Это связано с большой любовью и многолетней историей развития лыжного спорта. Методики подготовки лыжников у России и Норвегии считаются самыми лучшими в мире. В чем-то

есть сходство, а в чем-то и различие. Но все остальные страны пытаются подражать лидерам мирового лыжного спорта.

Российская и норвежская методика подготовки практически идентичны по общему тренировочному объёму. У наших спортсменов в среднем он равен 889 часам, а у норвежцев 891 час в год. Также сходство есть в периодизации. Подготовительный сезон в обеих методиках длится с мая по ноябрь. С мая до июля постепенно растёт общий объём за счёт увеличения низкоинтенсивных тренировок. С августа по ноябрь количество перерастает в качество. То есть общий объём остаётся прежний, но уменьшается низкая интенсивность и растёт высокая и средняя. В соревновательный период плавно уменьшается объём и средняя интенсивность, а высокая растёт.

Основное отличие в подготовке российских и норвежских спортсменов заключается в распределении интенсивности. В среднем за год наши спортсмены выполняют - 85,1% всех тренировок в низкой интенсивности, 8,1% средней и 6,8% - в высокой, а норвежцы - 89,3% в низкой, 5,1% - в средней и 5,6% - в высокой. Если углубиться в периодизацию, то в подготовительном периоде заметно отличие только в том, что с первых месяцев в подготовке норвежцев присутствует высокая интенсивность, а наши спортсмены начинают её использовать только с июля. В соревновательный период отличий больше. норвежцы даже во время соревновательного периода сохраняют процент низкой интенсивности, а у наших она уменьшается до 82,3%. Также норвежцы сильно уменьшают среднюю интенсивность до 2,3%, а у российских количество уменьшается. Что касаемо спортсменов eë не интенсивности - и у нас, и у норвежцев она растёт. Исходя из вышесказанного, можно сделать вывод о том, что российские лыжники готовятся пирамидальной модели распределения интенсивности, а норвежские поляризованной.

А какой подход к тренировкам используют зимние триатлеты в лыжной подготовке? Для того чтобы ответить на этот вопрос, нам потребуется подсчитать лыжную нагрузку объектов исследования и проанализировать её. Сначала подсчитаем распределение интенсивности по месяцам, а затем за сезон.

Лыжная подготовка Рогозиной Дарьи построена на большом количестве низкой интенсивности. С мая по август идёт подготовительный период, и количество низкой интенсивности находится на уровне 90%, при этом средняя интенсивности больше, чем высокой. В сентябре происходит уменьшение низкой и средней интенсивности, рост высокой. Это связано с подготовкой к октября соревнованиям. Далее c ПО декабрь идёт вторая подготовительного сезона. В этот период преобладает низкая интенсивность, но её количество уже чуть меньше, чем с мая по август, а также идёт плавное уменьшение средней интенсивности и рост высокой. Интересный момент заключается в том, что в октябре и ноябре средней интенсивности больше, чем а в декабре - наоборот. Это связано с началом зимнего соревновательного сезона. В январе, феврале и марте проходят все ключевые соревнования в зимнем триатлоне. И в этот момент уменьшается низкая и средняя интенсивность, и сильно растёт высокая. После расчёта и анализа в каждом тренировочном месяце я высчитал, что получилось в целом за год. Общий объём лыжной подготовки у Дарьи равен 303 часам, у Олега - 306 часов и у меня - 106 часов. Низкая интенсивность равна 86% у Дарьи, 87% - у Олега и 86% у меня, средняя 6%, 6%, 4% соответственно и высокая - 8%, 7%, 10%. Все эти данные записаны в таблицу 2.4. Как и в беговой, и в велосипедной подготовке низкая интенсивность преобладает над средней и высокой, но в лыжной её чуть - чуть больше, чем в остальных. Это связано с тем, что тренировки на лыжах и роллерах задействуют больше мышц человека, и поэтому для закладывания хорошей базы требуется больше тренировочного объёма в низкой интенсивности которая способствует улучшению аэробной и анаэробной базы. Что касаемо средней и высокой интенсивности подготовительный сезон преобладает пирамидальная методика подготовки, но во время соревнований она перетекает в поляризованную. А если брать сезон в целом, то тут явно пирамидальная система подготовки, так как высокой интенсивности у всех спортсменов больше. Проанализировав все данные, можно сделать вывод о том, что лыжная подготовка наших объектов исследования впитала в себя российскую и норвежскую методику подготовки спортсменов. Из российской методики позаимствовали уменьшение низкой интенсивности в соревновательный период и её среднее значение. А из норвежской методики взята поляризация интенсивности в тренировочном процессе и сильное уменьшение средней интенсивности в пользу высокой во время соревновательного периода.

Распределение интенсивности в зимнем триатлоне Анализ распределения интенсивности в зимнем триатлоне

В зимнем триатлоне, как и в любом другом виде спорта, важную роль играет общий объём и правильное распределение тренировочной нагрузки. Поскольку зимний триатлон включает несколько видов спорта, важно правильно распределить нагрузку и уделить внимание каждому сегменту. Поэтому зимние триатлеты выполняют большой объём тренировок, и чтобы не было перетренированности важно правильно распределять нагрузку по зонам интенсивности.

Чтобы найти наилучшее соотношение интенсивности, я начал подсчитывать нагрузку у моих объектов исследования. Ранее мы уже посчитали сколько тренировочного времени уделяет каждый спортсмен бегу, велосипеду и лыжам. У Дарьи 232 часа бега, 285 часов велоподготовки и 303 часа лыжных тренировок. У Олега 258 часов, 325 часов и 306 часов соответственно. У меня в сезоне 2021 - 2022 года было 128 часов бега, 123 часа велосипеда и 106 часов лыжной подготовки. У каждого спортсмена нагрузка по сегментам зимнего триатлона распределена по-разному. Дарья больше уделяла внимание лыжной подготовке, так как она выступает не только в триатлоне, но и в лыжных

гонках. Олега больше всего тренировал велосипед. По его словам, в этом сегменте он сильно уступал другим триатлетам и поэтому в сезоне 2024 - 2025 сконцентрировал внимание на нём. В моей подготовке преобладает беговая нагрузка, так как у меня в течении того сезона не было возможности больше тренироваться на роллерах, а велоподготовка у меня, по сравнению с другими юниорами, была на хорошем уровне, а вот в беге я им уступал.

Для поиска лучшего соотношения интенсивности надо рассчитать объём все тренировок объектов исследования. За весь сезон Дарья выполнила 890 часов нагрузки, Олег выполнил 955 часов и я 410 часов. Если сложить беговую, велосипедную и лыжную подготовку, то получится: у Дарьи 820 часов, у Олега 889 часов, у меня 357 часов. Отсюда возникает вопрос: почему суммарно все три сегмента меньше общего объёма? Ответить на этот вопрос просто. Подготовка зимних триатлетов включает в себя не только бег, велосипед и лыжи, но и силовую подготовку и немного различных подвижных игр. Хочется отметить, что у меня в подготовке намного больше силовой, чем у Дарьи и Олега, потому что для закладывания хорошей тренировочной базы с заделом на будущее в юниорском возрасте, тренера дают больше силовой работы, благодаря который дети быстрее прогрессируют. В таблицу 3.1 я записал количество выполняемого объёма исследуемыми спортсменами в часах и процентах. Следующим шагом стал подсчёт общей интенсивности за весь год. Силовую подготовку я сюда не включал, так как интенсивность в циклических видах спорта рассчитывается на основании аэробных нагрузок, а силовые тренировки направлены на развитие других качеств человека. Дарья за весь сезон провела 83% тренировок в низкой интенсивности, 6,6% в средней и 10,4% в высокой. У Олега низкой интенсивности было 83,4%, средней 6,2% и высокой 10,4%. У меня в сезоне 2021 - 2022 81% тренировок пришёлся на низкую интенсивность, 6.1% на среднюю и 12,9% на высокую. Хоть и количество времени уделённое разным сегментам у каждого триатлета разное, но в целом подготовка строится на базе низкой интенсивности. Каждый вид спорта, входящий в зимний триатлон, требует своей специфической подготовки, но интенсивность внутри неё распределяется практически одинаково.

Результат

Проанализировав все данные, можно с уверенностью сказать, что низкая интенсивность в подготовке зимних триатлетов преобладает над средней и высокой и находится на уровне 80%. Это указывает на то, что наилучшее соотношение низкой к средней и высокой интенсивности 80/20. Так как в зимний триатлон входят три вида спорта добиться идеального соотношения сложно, но можно к этому стремиться, а погрешность в несколько процентов не сильно критична. Как правило, низкой интенсивности больше чем 80%, потому что зимний триатлон требует выполнения большого объёма для достижения наилучших спортивных результатов, но все же лучше стремиться к данному соотношению.

В подготовке зимних триатлетов лучше использовать поляризованную модель распределения интенсивности, потому что она сильнее способствует развитию аэробной базы при минимальных затратах. Она повышает пиковую производительность, в частности максимальную аэробную мощность и анаэробную выносливость, а это очень важно в зимнем триатлоне. Хоть и гонка длинная, но в ней много сегментов, требующих быстрого переключения и анаэробной мощности. В отдельные высокой моменты подготовки целесообразно использовать пирамидальную модель подготовки, ведь в ней тоже есть свои плюсы, но в целом за сезон должно преобладать поляризованное распределение интенсивности. Поэтому большинство профессиональных триатлетов используют поляризованную модель подготовки.

Заключение

На основании проведённого исследования мы выяснили, что в зимнем триатлоне необходимо распределять интенсивность в соотношении 80 на 20, где основная часть тренировок уделяется низкой интенсивности и только 20% уходит на среднюю и высокую. Но не стоит забывать, что в триатлон входит три вида спорта, и в рамках каждого есть свое оптимальное распределение, а именно в лыжной подготовке нужно больше проводить тренировок в низкой интенсивности. Также мы выяснили, что оптимальной моделью тренировок Она способствует является поляризованная. большему функциональных показателей y профессиональных спортсменов, пирамидальная, но в отдельные периоды подготовки можно использовать и пирамидальную например: время модель, восстановления после соревнований.

Практическая значимость работы заключается в том, что правильное распределение интенсивности приводит спортсменов к самым высоким результатам, а это значит, что используя описанную мной модель подготовки зимних триатлетов, можно увеличить продуктивность тренировочного процесса, вследствие чего будет больше сильных спортсменов и повысится конкуренция на всероссийских соревнованиях.