МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра органической и биоорганической химии

Выделение, изучение химического состава и свойства полисахаридов клеточной поверхности бактерии *Lysobacter gummosus* GmNf6s

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента (ки)	<u>IV</u> курса	<u>412</u> группы	
направлению	<u>04.03.01 – «Хим</u>	«RN	
	\overline{N}	нститута химии	
	Черкасовой	Елизаветы Анатоль	евны
	фам	илия, имя, отчество	
v			
Научный руков	водитель		
доцент к.б.н.,д	юцент		Г.Л.Бурыгин
должность, уч. степень, уч. звание подпись, дата инициалы, фамилия			
Зав. кафедрой			
профессор, д.х.	.н., профессор		А.Ю. Егорова
должность, уч. ст	епень, уч. звание	подпись, дата	инициалы, фамилия

Актуальность и цель работы.

Полисахариды ЭТО наиболее распространенные природе высокомолекулярные полимеры, синтезируемые в клетках водорослей, растений, грибов и бактерий. Полисахариды являются важными компонентами и выполняют множество функций в биологической системе, таких как межклеточная коммуникация, адгезия и молекулярное распознавание в иммунной системе. Наибольший интерес представляют именно бактериальные полисахариды, которые помимо защитной и структурной функцией для бактерий, ΜΟΓΥΤ обладать антиоксидантными, иммуномодуляторными свойствами, а также способны тормозить рост раковых клеток. Основная локализация бактериальных полисахаридов связана с компонентами клеточной включая липополисахариды $(\Pi\Pi C)$ наружной мембраны поверхности, грамотрицательных бактерий, а также внеклеточный матрикс биопленок, в котором доминируют экзополисахариды (ЭПС).

ЛПС и ЭПС являются малоизученными структурами живых организмов, ЛПС однако являются важными компонентами клеточной стенки грамотрицательных бактерий и играют важную роль в их патогенности. В свою ЭПС выполняют очередь ключевую роль В адаптации бактерий неблагоприятным условиям окружающей среды. Они обеспечивают защиту от дегидратации, механических стрессов и других экстремальных факторов.

Бактерии рода Lysobacter представляют научный интерес, поскольку их свойства до сих пор остаются малоизученными. Особый интерес вызывают липополисахариды (ЛПС) и экзополисахариды (ЭПС), продуцируемые этими бактериями: они находят применение в разработке новых вакцин против инфекционных заболеваний, создании биоматериалов также В фармацевтических препаратов. ЭПС также применяются пищевом производстве в качестве загустителей, пребиотиков и биопленок. Еще одной важной особенностью ЛПС и ЭПС, продуцируемых бактериями рода Lysobacter, является их способность проявлять противомикробную и фунгицидную активность.

Цель работы

Работа состояла в изучении химического состава и основных свойств полисахаридов клеточной поверхности бактериального штамма *Lysobacter gummosus* GmNf6s ранее изолированного из клубеньков сои в Саратовской области.

Работа включала следующие задачи:

- 1. Выделить препараты ЛПС и ЭПС из бактериальной культуры штамма *Lysobacter gummosus* GmNf6s.
- 2. Определить физико-химические свойства надмолекулярных частиц, формируемых ЛПС в водной среде.
- 3. Установить биополимерный состав ЛПС Lysobacter gummosus GmNf6s.
- 4. Выявить биологическую активность ЛПС в отношении микрорастений.
- 5. Определить массовую долю углеводов в составе ЭПС и условия культивирования бактерий с максимальным выходом ЭПС.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследований, выполненных в работе, сформулированы цели и задачи работы.

<u>В первой главе</u> изложен анализ научной литературы рода *Lysobacter*, охарактеризованы везикулы внешней мембраны, их строение и биогенез, представлена характеристика липополисахаридов и экзополисахаридов, их строение и значимость в различных отраслях, а также влияние различных внешних условий на выработку ЭПС.

Во второй главе описаны экспериментальные методики выделения ЛПС и ЭПС из клеточной стенки бактериальной культуры штамма Lysobacter gummosus GmNf6s, методики определения физико-химических свойств надмолекулярных частиц, формируемых ЛПС в водной среде, методики установления биополимерного состава ЛПС, методики выявления биологической активности ЛПС в отношении микрорастений, методики определения массовой доли углеводов в составе ЭПС.

В третьей главе приведены результаты выхода ЛПС и ЭПС, физико-химических характеристик ЛПС. В этой же главе представлены результаты определения биополимерного состава ЛПС, охарактеризована биологическая активность ЛПС в отношении микрорастений. Также представлен выход массовой доли углеводов в составе ЭПС, выращенный в различных условиях культивирования бактерий.

Доля выхода ЛПС при выделении из Lysobacter gummosus GmNf6s

Из 7,5 л бактериальной культуры путем многократного промывания фосфатно-солевым буфером и ацетоном была получена сухая биомасса клеток (4,1 г), из которых *Lysobacter gummosus* GmNf6s был экстрагирован с помощью фенольной экстракции, белки и нуклеиновые кислоты удалены с помощью трихлоруксусной кислоты, препарат лиофилизировали и хранили при комнатной температуре. Масса ЛПС составляла (0,451 г). Массовая доля выхода ЛПС из сухих клеток равна 11%.

Физико-химические характеристики мицелл ЛПС

Размер мицелл

ЛПС являются амфифильными молекулами, и соответственно, в воде образуют надмолекулярные частицы. Результат измерения с использованием метода динамического рассеивания света (рисунок 1a) показал, что в водном растворе частицы ЛПС *Lysobacter gummosus* GmNf6s имеют диаметр 65,5±2,2 нм.

Заряд мицелл

Результат измерения с использованием метода динамического рассеивания света (рисунок.1б) показал, что в водном растворе частицы ЛПС Lysobacter gummosus GmNf6s имеют заряд $-3,6\pm0,9$ мВ ,фракции $-22,8\pm1,4$ мВ. По значениям заряда надмолекулярных частиц можем сделать вывод об их неустойчивости в растворах. (рис 1б)

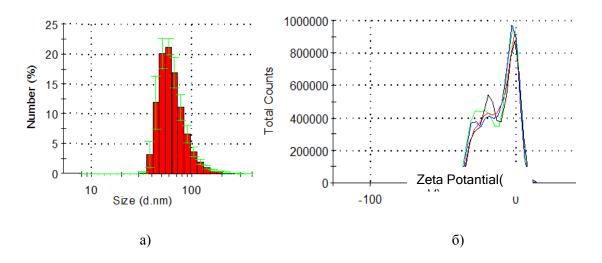


Рисунок 1 - Результаты измерения размера (а) и дзета-потенциала (б) надмолекулярнх частиц ЛПС *Lysobacter gummosus* GmNf6s в водном растворе (C=1 мг/мл) при 37°C методом динамического рассеивания сета.

Денатурирующий электрофорез в полиакриламидном геле

Электрофоретическое разделение в полиакриламидном геле продемонстрировал преобладание низкомолекулярной фракции молекул в составе ЛПС *gummosus* GmNf6s. Профиль из лестничных полос доказывает о наличии различных звеньев О-полисахарида (рисунок 2)

Рисунок 2 - Результат ДСН-ПААГ электрофореза в 12,5%-ом геле; образец - 40 мкг ЛПС. а) *Pseudomonas chlororaphis* K3; б) *L. gummosus* GmNf6s

Определение структурных фрагментов ЛПС

Содержания остатков жирных кислот в составе липида А

Проведен анализ жирных кислот, в результате которого было выявлено, что липид А состоит в основном из 3- гидрокситетрадекановой кислоты (72,4%) и в меньшем содержании гексадекановой (14,6%), тетрадекановой (4,6%) и додекановой кислот (1,9%) (рисунок 3).

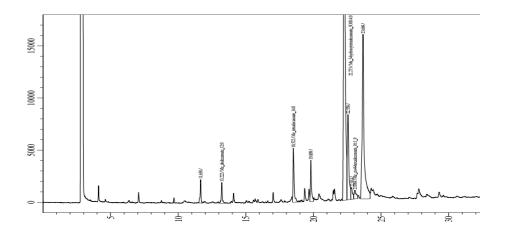


Рисунок 3 - Определение состава жирных кислот липида A с помощью хроматографического анализа ЛПС *Lysobacter gummosus* GmNf6s.

Определение доли углеводов в ЛПС Lysobacter gummosus GmNf6s

Была проведена фенол-сернокислотная реакция: содержание углеводов в выделенном препарате ЛПС штамма *Lysobacter gummosus* GmNf6s составило 16% относительно глюкозы (рисунок 4).

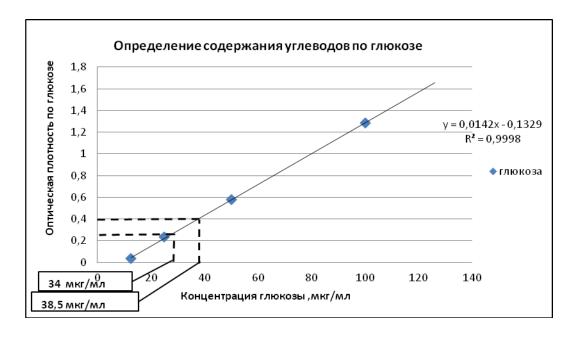


Рисунок 4 - Калибровочная кривая зависимости оптической плотности продуктов фенол-сернокислотной реакции от концентрации глюкозы. И определение содержания углеводов в 200 мкг/мл и 250 мкг/мл ЛПС по значениям оптической плотности продуктов фенол-сернокислотной реакции.

Спектр *Lysobacter gummosus* GmNf6s не совпадает со спектром глюкозы. Это означает, что ЛПС содержит в своем составе сахара отличные от глюкозы (рисунок 5).

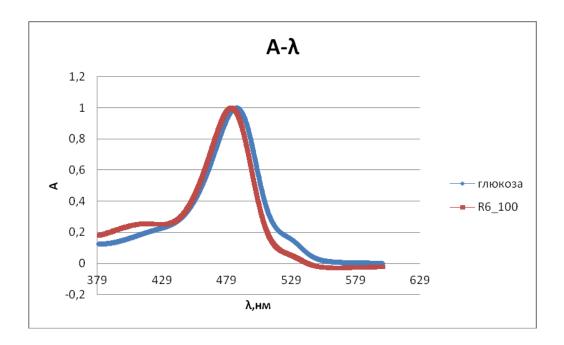
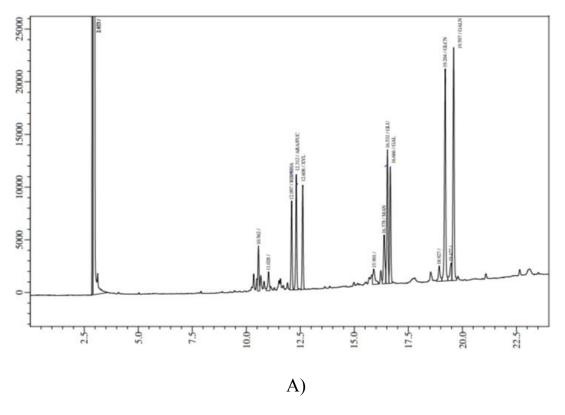



Рисунок 5 - Нормированные на максимум спектры поглощения света продуктов фенол-сернокислотной реакции глюкозы и ЛПС *Lysobacter gummosus* GmNf6s(100мкг/мл).

Характеристика углеводов в составе препарата ЛПС

С помощью хроматографического анализа ацетат полиолов (рисунок 6) было установлено, что ЛПС *штамма* GmNf6s содержит в своем составе нестандартные моносахаридные остатки.

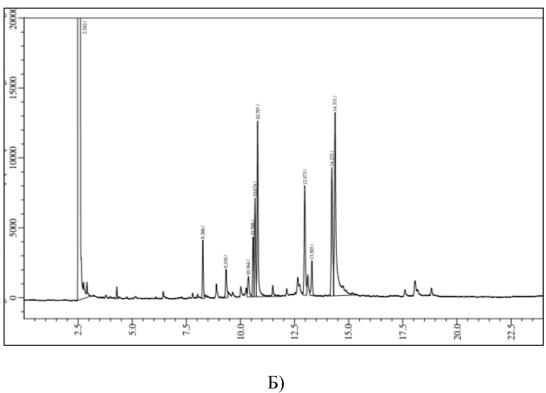


Рисунок 6 - Регистрирование содержания ацетатов полиолов с помощью хроматографического анализа а) стандартные значения моносахаридов б) L. gummosus~GmNf6s

Биологическая активность в отношение микрорастений картофеля

Добавление 2 мг/мл ЛПС штамма *Lysobacter gummosus* GmNf6s в среду культивирования оказало положительное влияние на рост микрорастений картофеля сорта Кондор (таблица 1). Количество корней увеличилось на 15% (р < 0,05), увеличение сырой массы побега на 4,5%, сырой массы корней на 17%, сухой массы корней на 14,4% (р < 0,05). Таким образом, штамма ЛПС *L.gummosus* GmNf6s существенно влияет на корневую систему картофеля и не влияет на стимуляцию роста побегов.

Таблица 1 - Морфометрические показатели 30-дневных микрорастений картофеля Кондор после инкубации с ЛПС *L. gummosus* GmNf6s

Показатель	Контроль	ЛПС R6	p
Длина побега, мм	82,48±5,79	83,73±6,34	0,71
Количество узлов	4,91±0,55	5,36±0,62	0,23
Количество корней	11,87±1,86	13,67±1,34	0,03
Суммарная длина корней, мм	483,3±49,72	466,6±35,48	0,61
Сырая масса побега, г	436,18±5,53	455,8±19,33	0,06
Сухая масса побега, г	35,78±0,71	35,77±0,77	0,9874
Сырая масса корней, г	292,9±14,10	342,0±30,40	0,00012
Сухая масса корней, г	15,99±1,16	18,29±1,63	0,011

Доля выхода ЭПС при выделении из Lysobacter gummosus GmNf6s

Препараты ЭПС были выделены из *Lysobacter gummosus* GmNf6s, культивируемые на двух различных средах (YMA и LB) с разными внешними

условиями. Анализ данных, представленных в таблицах 2 и 3, демонстрирует, что добавление сахарозы в состав питательных сред YMA и LB приводит к увеличению выхода ЭПС, так как происходит увеличение соотношения C:N, что является для данного типа бактерий стрессовым фактором.

В то же время, увеличение продолжительности культивирования и снижение температуры инкубации негативно влияет на выход ЭПС. Таким образом, полученные результаты свидетельствуют о том, что увеличение времени культивирования и температурные колебания не оказывают выраженного стрессового воздействия на *Lysobacter gummosus* GmNf6s, поскольку не приводят к увеличению продукции ЭПС, как можно было бы ожидать при стрессовом воздействии.

Таблица 2 - Доля выхода ЭПС при выделении из Lysobacter gummosus GmNf6s на среде YMA

	YMA+10 _Γ	YMA	YMA	YMA	YMA
	сахарозы	+10Γ	+10Γ	+20Γ	+20Γ
	28°C	сахарозы	сахарозы	сахарозы	сахарозы
	1 сутки	20°C	28°C	28°C	32°C
		1 сутки	2 суток	1 сутки	2 суток
Масса,	97	95,5	66,9	102	72
Выход,	100	98,5	69	105	74,2

Таблица 3 - Доля выхода ЭПС при выделении из Lysobacter gummosus GmNf6s на среде LB

	LB	LB	LB	LB + 10Γ
	28°C	28°C	25°C	сахарозы
	1 сутки	43 часа	1 сутки	28°C
				1 сутки
Масса,	66,8	187,7	280	301
Выход,	100	281	419,2	450,6

Определение доли углеводов в ЭПС Lysobacter gummosus GmNf6s

Была проведена фенол-сернокислотная реакция: содержание углеводов в выделенных препаратах ЭПС штамма Lysobacter gummosus GmNf6s. Данные из таблиц 4 И 5 YMA демонстрируют, что на среде увеличение продолжительности культивирования и температуры приводит к увеличению выработки углеводов в ЭПС. В то же время на среде LB увеличении доли углеводов в составе ЭПС происходит при наличии в среде сахарозы, увеличение времени культивирования температуры И являются ингибирующими факторами.

Лучшей средой для выращивания ЭПС с высокой концентрацией углеводов является — YMA.

Таблица 4 - Доля углеводов в 100 мкг/мл ЭПС при выделении из *Lysobacter gummosus* GmNf6s на среде YMA

	YMA	YMA	YMA	YMA	YMA
	+10Γ	+10Γ	+10Γ	+20Γ	+20Γ
	сахарозы	сахарозы	сахарозы	сахарозы	сахарозы
	28°C	20°C	28°C	28°C	32°C
	1 сутки	1 сутки	2 суток	1 сутки	2 суток
Концентрация мкг/100 мкг	39,42	81,83	91,09	36,53	90,46

Таблица 5 - Доля углеводов в 100 мкг/мл ЭПС при выделении из Lysobacter gummosus GmNf6s на среде LB

	LB	LB	LB	LB + 10г
	28°C	28°C	25°C	сахарозы
	1 сутки	43 часа	1 сутки	28°C
			- 3	1 сутки
Концентрация мкг/мл	56,47	14,64	12,22	16,87

ЗАКЛЮЧЕНИЕ

- 1. Был получен препарат липополисахарида штамма *Lysobacter gummosus* GmNf6s в количестве 0,451 г, выход составил 11% от сухих клеток.
- 2. С помощью метода динамического светорассеивания был определен размер надмолекулярных частиц (65,5±2,2нм) и их дзета-потенциал (фракция 1: -3,9±0,9 мВ; фракции 2: -22,8±1,4 мВ). Электрофоретическое разделение в полиакриламидном геле продемонстрировал преобладание низкомолекулярной фракции молекул в составе ЛПС *Lysobacter gummosus* GmNf6s.
- 3. Хроматографический анализ жирных кислот показал преобладание в липиде А липополисахарида штамма *Lysobacter gummosus* GmNf6s 3-гидрокситетрадекановой кислоты (72,4%). Полученный препарат ЛПС характеризовался низким содержанием углеводов 16%, определенных относительно глюкозы фенол-сернокислотным методом.
- 4. Препарат ЛПС Lysobacter gummosus GmNf6s оказывал положительное влияние на рост корней микрорастений картофеля сорта Кондор. Количество корней увеличивалось на 15% (р < 0,05), сырая массы побега на 4,5%, сырая масса корней на 17%, сухая масса корней на 14,4% (р < 0,05).
- 5. Был получен препарат ЭПС Lysobacter gummosus GmNf6s при культивировании бактерий на двух разных средах при различных внешних факторах. Наибольший выход экзополисахаридов со среды YMA составил при добавлении 20 г сахарозы и культивировании в течение 1 суток при температуре 28°C. Наибольший выход препарата на среде LB составил при добавлении 10 г сахарозы при культивировании в течение 1 суток при температуре 28°C. Доля выхода углеводов с 1 литра среды YMA составляет 86 мг.