МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра радиофизики и нелинейной динамики

«Сложные сети с адаптивными связями (обзор литературы)»

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

ВВЕДЕНИЕ

В современном мире, где технологии и информационные системы становятся все более сложными и взаимосвязанными, изучение сложных сетей с адаптивными связями представляет собой важное и актуальное направление исследований. Я выбрал эту тему для своей выпускной квалификационной работы, поскольку она находит применение в самых разнообразных областях, от биологии и нейронаук до социологии и информационных технологий. Сложные сети с адаптивными связями обладают уникальной способностью изменять свою структуру и динамику в ответ на внутренние и внешние воздействия, что позволяет им эффективно адаптироваться к изменяющимся условиям.

Актуальность исследования сетей с адаптивными связями обусловлена их широким применением в моделировании реальных систем. В условиях стремительного технологий развития И увеличения сложности информационных систем, понимание и управление такими сетями становятся критически важными. Адаптивные сети находят применение в самых различных областях, таких как нейронные сети, социальные взаимодействия, транспортные потоки и многие другие. В таких системах адаптивность связей играет критическую роль в обеспечении устойчивости, надежности и эффективности функционирования. Например, В нейронных сетях адаптивные связи позволяют моделировать синаптическую пластичность, что является основой для обучения и памяти. В социальных сетях адаптивные связи могут отражать изменяющиеся взаимодействия между индивидами, что важно для понимания динамики социальных групп и сообществ.

Целью выпускной квалификационной работы является проведение обзора литературы по теме сложных сетей с адаптивными связями, выявление ключевых концепций, моделей и методов, используемых в современных исследованиях, а также анализ их применения в различных областях науки и техники. В рамках данной работы планируется рассмотреть основные типы адаптивных сетей, механизмы их функционирования, методы

анализа и управления, а также примеры практического применения. Это позволит не только систематизировать существующие знания, но и выявить перспективные направления для дальнейших исследований.

Структура работы включает несколько основных разделов. В первом разделе рассматриваются основные понятия и определения, связанные со сложными сетями и адаптивными связями. Это включает в себя обзор базовых концепций теории графов, таких как узлы, связи, степени узлов, а также различные типы сетей, такие как случайные, регулярные и безмасштабные сети. Особое внимание будет уделено адаптивным сетям, их определению и ключевым характеристикам, которые отличают их от статических сетей.

Во втором и третьем разделах проводится обзор различных типов адаптивных сетей. В частности, будут рассмотрены нейронные сети, которые являются одним из наиболее ярких примеров адаптивных сетей. Нейронные сети обладают способностью изменять силу связей между нейронами в зависимости от их активности, что является основой для обучения и адаптации. Также будут рассмотрены социальные сети, где адаптивные связи могут отражать изменяющиеся взаимодействия между индивидами, и транспортные сети, где адаптивность может проявляться в изменении маршрутов в зависимости от текущей загруженности сети. Также приводятся примеры практического применения адаптивных сетей в различных областях. Это включает в себя применение адаптивных сетей в нейронауках для моделирования процессов обучения и памяти, в социологии для анализа динамики социальных групп, в транспортных системах для оптимизации маршрутов и управления потоками, а также в других областях, таких как биология, экология и информационные технологии.

В четвертом разделе рассматриваются примеры сложных структур, таких как химерные состояния, которые реализуются в ансамблях (сетях) связанных осцилляторов с адаптивными типами связями.

Пятый раздел работы посвящен обзору и краткому описанию различных эффектов синхронизации, которые могут наблюдаться в адаптивных сетях.

Шестой раздел посвящен методам анализа и управления адаптивными сетями. В этом разделе я рассмотрю математические модели, используемые сетей, ДЛЯ описания адаптивных такие как модели на основе дифференциальных уравнений, стохастические модели и модели на основе теории графов. Также будут рассмотрены алгоритмы управления адаптивными сетями, включая методы оптимизации, адаптивного управления и управления на основе обратной связи.

В заключении подводятся итоги исследования и отмечаются перспективы дальнейших исследований в данной области. Будут рассмотрены основные выводы, сделанные в ходе обзора литературы, а также обсуждены возможные направления для будущих исследований, такие как разработка новых методов анализа и управления адаптивными сетями, исследование их применения в новых областях и разработка более точных и эффективных моделей.

Таким образом, данная работа направлена на систематизацию и анализ современных исследований в области сложных сетей с адаптивными связями, что позволит лучше понять их роль и значение в различных научных и прикладных областях. Это исследование также может послужить основой для дальнейших исследований и разработок в области адаптивных сетей, способствуя развитию новых технологий и методов управления сложными системами.

В процессе написания данной работы будут использованы различные источники литературы, включая научные статьи, книги и другие публикации, посвященные теме сложных сетей и адаптивных связей. Это позволит обеспечить всесторонний и глубокий анализ рассматриваемой темы, а также выявить ключевые тенденции и направления в современных исследованиях.

Кроме того, в работе будут рассмотрены различные подходы и методы, используемые для анализа и управления адаптивными сетями. Это включает в себя как теоретические, так и практические аспекты, что позволит получить комплексное представление о текущем состоянии исследований в данной области и выявить перспективные направления для дальнейших разработок. В заключение, данная работа представляет собой важный шаг в понимании и анализе сложных сетей с адаптивными связями. Она направлена на систематизацию существующих знаний, выявление ключевых концепций и методов, а также анализ их применения в различных областях. Это позволит не только лучше понять роль и значение адаптивных сетей, но и наметить перспективные направления для дальнейших исследований и разработок в данной области.

1 ОПРЕДЕЛЕНИЕ СЕТИ С АДАПТИВНЫМИ СВЯЗЯМИ

1.1. Особенности топологии связи

Топология связи определяет структуру сети и включает физическую и логическую топологии. Физическая топология отражает реальное расположение узлов и линий связи, в то время как логическая топология описывает схему взаимодействия узлов и маршрутизации данных. Основные виды физической топологии включают звёздную, шинную, кольцевую, древовидную и меш топологии. Логическая топология может не совпадать с физической и включает логическую звезду, шину и кольцевую топологии.

1.2. Способы задания адаптивных связей

Адаптивные связи в динамических сетях характеризуются возможностью изменения В процессе эволюции системы. Основные подходы К моделированию адаптивных связей включают перестройку в ответ на внутреннее изменение связей состояние элементов сети, веса использование event-driven или поведенческих Эти правил. методы

позволяют моделировать сложные реакции системы на внутренние или внешние стимулы.

1.3. Математические модели адаптивных динамических сетей

Математические модели адаптивных динамических сетей позволяют описывать сложные системы, в которых взаимодействия между элементами изменяются во времени. Эти модели включают дифференциальные уравнения изменения связей и условия перезапуска или перестройки связей в соответствии с критериями. Примеры таких моделей включают уравнения адаптации и правила обновления веса связей.

2 МОДЕЛИРОВАНИЕ ДИНАМИКИ РЕАЛЬНЫХ СИСТЕМ

Моделирование динамики реальных систем с использованием адаптивных сетей позволяет более точно описывать сложные процессы, происходящие в различных областях. Примеры применения адаптивных сетей включают моделирование операционных сетей поиска и спасания, автоматическое обнаружение правил и культурную интеграцию при корпоративных слияниях. Эти подходы открывают новые возможности для анализа и понимания сложных систем.

3 СЕТИ С СИНАПТИЧЕСКОЙ ПЛАСТИЧНОСТЬЮ

3.1. Нейронные сети

Нейронные сети представляют собой вычислительные модели, вдохновленные структурой и функционированием биологических нейронных сетей. Они состоят из взаимосвязанных узлов или "нейронов", которые обрабатывают информацию. Основная идея заключается в том, чтобы имитировать способность биологических нейронов к обучению и адаптации.

3.2. Сети с мемристивной связью

Мемристивные устройства представляют собой новый класс электронных компонентов, которые могут изменять свое сопротивление в зависимости от истории протекания тока. Это свойство делает их идеальными кандидатами имитации синаптической пластичности нейронных ДЛЯ В сетях. Мемристивные устройства могут быть использованы ДЛЯ создания синаптических связей, которые изменяют свою силу в зависимости от активности нейронов.

3.3. Роль в развитии нейроморфных вычислений

Нейроморфные вычисления представляют собой подход к созданию вычислительных систем, вдохновленных структурой и функционированием биологических нейронных сетей. Они стремятся имитировать способность биологических нейронов к обучению и адаптации, что позволяет создавать более эффективные и адаптивные вычислительные системы.

4. СЛОЖНЫЕ СТРУКТУРЫ В АДАПТИВНЫХ СЕТЯХ

4.1. Химерные структуры и уединенные состояния в ансамблях фазовых осцилляторов

Химерные состояния представляют собой пространственно-временные паттерны, в которых в ансамбле идентичных связанных осцилляторов области сосуществуют когерентного И некогерентного поведения. Уединенные осцилляторы — это осцилляторы, которые значительно отличаются по своему поведению от остальной части ансамбля. Эти представляют большой интерес структуры для понимания функционирования различных реальных систем.

4.2. Химерные структуры и уединенные состояния в сетях связанных моделей нейронов

Химерные состояния и уединенные осцилляторы играют важную роль в функционировании нейронных сетей. Они могут быть индикаторами уязвимости системы к внешним воздействиям или признаками начинающихся нарушений в ее работе. Изучение этих структур важно для понимания устойчивости и надежности сложных систем.

5 ЭФФЕКТЫ СИНХРОНИЗАЦИИ В АДАПТИВНЫХ СЕТЯХ

5.1. Адаптивная синхронизация

Адаптивная синхронизация — это стратегия, позволяющая узлам в сложных сетях автоматически настраиваться для поддержания синхронного состояния при отсутствии полной информации о структуре и характеристиках связей. Этот механизм позволяет узлам сети самостоятельно подстраиваться на основе только локальной информации.

5.2. Кластерная синхронизация

Кластерная синхронизация — это явление, при котором узлы в сложной сети самоорганизуются группы, где **У**ЗЛЫ внутри каждого кластера демонстрируют синхронизированное поведение. Это промежуточное состояние между полной синхронизацией и отсутствием синхронизации. Кластерная синхронизация представляет большой интерес для понимания и управления сложными системами.

5.3. Взрывная синхронизация

Взрывная синхронизация — это резкий и необратимый переход к синхронному состоянию в сети связанных осцилляторов при достижении определенного критического значения параметра связи. Это явление привлекает все большее внимание исследователей, поскольку оно наблюдается в различных реальных системах.

6. МЕТОДЫ УПРАВЛЕНИЯ НА ОСНОВЕ АДАПТИВНЫХ СВЯЗЕЙ

Методы управления на основе адаптивных связей позволяют системе адаптироваться к изменениям параметров и условий окружающей среды. Эти методы особенно полезны в системах, где параметры могут изменяться со временем или быть неизвестными заранее. Примеры адаптивного управления включают нейронные сети и сети Хиндмарша-Роуз.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной выпускной квалификационной работы проведен обзор литературы, посвященной сложным сетям с адаптивными связями. Эта тема оказалась невероятно увлекательной и многогранной, охватывающей широкий спектр научных дисциплин и практических приложений. В процессе исследования были получены новые знания в области теории графов, динамических систем и методов анализа сложных сетей, что позволило лучше понимать их структуру, функционирование и возможности применения в различных областях.

По теме выпускной работы опубликовано довольно большое количество статей и информации, что потребовало проведение тщательного отбора и анализа наиболее релевантных и значимых источников. Кроме того, сложность и междисциплинарный характер темы требовали глубокого понимания различных научных дисциплин и методов исследования. Однако, несмотря на эти трудности, работа над данным исследованием оказалась чрезвычайно полезной и обогащающей.

Работа над темой выпускной квалификационной работы показала, что существует множество перспективных направлений для дальнейших исследований в области сложных сетей с адаптивными связями. Например, разработка новых методов анализа и управления адаптивными сетями может способствовать улучшению их функционирования и расширению областей применения. Исследование их применения в новых областях, таких как

медицина, энергетика и экология, может открыть новые возможности для решения актуальных задач и проблем. Кроме того, разработка более точных и эффективных моделей адаптивных сетей может способствовать улучшению их предсказательной способности и надежности.