МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нефтехимии и техногенной безопасности

Очистка сланцевой смолы от серосодержащих компонентов на промышленных катализаторах

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента2 курса _	252 группы						
направления18.04.0	1 «Химическая техноло	«кило					
код и наименование направления, специальности							
Института химии							
Ткаченко Екатерины Сергеевны							
Научный руководитель доцент, к.х.н., доцент		С.Б. Ромаденкина					
должность, уч. ст., уч. зв.	подпись, дата	инициалы, фамилия					
Заведующий кафедрой д.х.н., профессор		Р.И. Кузьмина					
должность, уч. ст., уч. зв.	подпись, дата	инициалы, фамилия					

Саратов 2025 год

ВВЕДЕНИЕ

Россия обладает значительными запасами нефти, газа и сланцев, занимая лидирующие позиции в мире. Однако, истощение запасов традиционной нефти и растущий спрос на альтернативные источники топлива ведут к развитию технологий получения синтетической нефти из керогена (LTO). Проекты LTO привлекательны из-за гибкости и меньшей капиталоемкости.

Усиление экологических норм требует снижения содержания серы в топливе. Традиционные и синтетические нефти содержат серосодержащие соединения, вызывающие загрязнение окружающей среды. Поэтому разработка эффективных методов очистки от серы является актуальной задачей. В настоящее время лидирующие позиции занимает гидроочистка с использованием алюмокобальтмолибденовых и алюмоникельмолибденовых катализаторов.

Тяжелое углеводородное сырье (гудрон, мазут, сланцевая смола) ценно как товарный продукт и как сырье для вторичной переработки. Однако его использование ограничено жесткими требованиями к содержанию серы, азота и металлов, требуя предварительной очистки.

Целью работы является проведение сравнительного анализа эффективности очистки от высокосернистых соединений сланцевой смолы на промышленных катализаторах DN -200, $\Gamma O -70$, HR -526 и $\Gamma ДK -202$.

Магистерская работа Ткаченко Екатерина Сергеевна на тему «Очистка сланцевой смолы от серосодержащих компонентов на промышленных катализаторах» представлена на 67 страницах, содержит 14 рисунков и 13 таблиц, и состоит из двух 2 глав:

- 1 Литературный обзор
- 2 Практическая часть

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой части литературного обзора магистерской работы осуществлен поиск данных о традиционных способах очистки тяжелого сырья от серосодержащих компонентов, основополагающих технологических параметров процесса гидроочистки, о структуре и физико-химических свойствах алюмокобальтмолибденовых (АКМ) и алюмоникельмолибденовых (АНМ) катализаторов, об активных центрах катализаторов и используемых катализаторах в промышленности.

Повышенный спрос на нефть, включая синтетическую из керогена, привел к ужесточению экологических норм по содержанию серы в топливе (не более 1,2-1,3%). Нефть содержит около 200 сернистых соединений, среди которых наиболее агрессивны сероводород, меркаптаны и элементарная сера. Снижение серы и её составляющих является актуальной задачей в химической технологии.

Существующие методы очистки можно разделить на селективное извлечение, окислительное и экстракционное обессеривание, водородные методы очистки и волновые.

обессеривание – это Окислительное метод, основанный использовании окислителей, таких как пероксид водорода, в сочетании с металлов) преобразования катализаторами (например, солями ДЛЯ серосодержащих соединений, например меркаптанов, сульфидов, в менее токсичные и более легко удаляемые продукты. Процесс может проходить в однородной или гетерогенной фазах, что позволяет эффективно взаимодействовать реагентам

Экстракционные методы очистки основаны на их повышенной растворимости в полярных растворителях по сравнению с углеводородами. Это экономичный способ, отличающийся простотой технологического оформления и отсутствием химического воздействия на сырье. Мягкие условия процесса (низкие температура и давление) предотвращают образование нагара и сохраняют углеводородный состав сырья.

Селективность извлечения серы достигается выбором подходящего экстрагента, однако разная растворимость различных сернистых соединений ограничивает эффективность метода. Для обеспечения качественного перемешивания и массообмена необходимо использовать несмешивающиеся жидкости с низкой вязкостью. Важными факторами являются также экономичность и безопасность используемого растворителя.

Ультразвуковые методы начали изучаться первоначально ДЛЯ химических реакций. интенсификации Применение ультразвука ДЛЯ обессеривания стало активно развиваться с 1980-х и 1990-х годов, с фокусом на обработке нефти и угля. Кавитационные методы также начали исследоваться в середине 20 века, но их применение для обессеривания стало более актуальным в последние два-три десятилетия, с развитием технологий создания эффективных кавитационных генераторов. Применение СВЧ и других электромагнитных полей для обессеривания является относительно новой областью исследований, активно развивающейся в последние 15-20 лет.

Гидроочистка представляет собой ключевой процесс в нефтепереработке, направленный на удаление нежелательных примесей из углеводородного сырья, таких как сернистые соединения, ароматические углеводороды и другие загрязнители. Как метод удаления сернистых примесей, гидроочистка зарекомендовала себя одним из самых эффективных и широко применяемых процессов.

Таким образом, все методы обессеривания направлены на улучшение качества топлива и защиту окружающей среды, что подчеркивает важность соблюдения экологических стандартов в нефтепереработке. Гидроочистка является наиболее эффективным методом удаления сернистых примесей из углеводородного сырья, что соответствует современным экологическим требованиям.

Каталитические процессы играют ключевую роль в нефтепереработке, составляя основу более 90% технологий. В 2014 году мировой рынок катализаторов оценивался в 23,4-24,6 млрд долларов, из которых 29%

приходилось на нефтепереработку. Россия в 2015 году потребляла примерно 80 тысяч тонн таких катализаторов, с прогнозируемым ежегодным ростом потребления на 1,8%. [21].

После проведения процесса пиролиза горючего сланца Коцебинского месторождения составлен материальный баланс в пересчете на 1 кг (таблица 3).

Таблица 3 - Материальный баланс процесса пиролиза

Приход		Расход			
Сырье	мас. %	масса, г	Продукты	мас. %	масса, г
			Жидкость:		
Горючий сланец	100	1000	вода	7,5	75
			смола	13,7	137
			Газ	16,8	168
			Твердый минеральный остаток	60,3	603
			Потери	1,7	17
Итого:	100	1000	Итого:	100,0	1000

На основе полученных данных выход сланцевой смолы составляет приблизительно 14 мас. %.

ВЫВОДЫ

- 1. Экспериментально установлено, что максимальная степень очистки сланцевой смолы достигается при температуре 380 °C на всех марках катализаторов.
- 2. Сравнительная оценка эффективности каталитических систем в процессе очистки сланцевой смолы выявила:
 - ▶ катализатор марки ГКД-202 показал наименьшую степень очистки (43,6 масс. % при температуре 380°С), что свидетельствует о его неэффективности для очистки данного типа сырья;
 - жатализатор марки DN-200 продемонстрировал эффективность на протяжении 10 циклов работы;
 - катализатор марки HR-526 имеет ограниченный срок службы. После 15 циклов работы наблюдается значительная деактивация, приводящая к повышению содержания сернистых соединений в продукте до уровня, близкого к исходному.
- 3. Установлено, что среди изученных каталитических система, катализатор марки HR-526 демонстрирует избирательность при очистки сланцевой смолы от серосодержащих соединений. Это свидетельствует о его преимуществе по сравнению с другими катализаторами и перспективности применения в технологических процессах переработки сланцевой смолы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Организация стран-экспортёров нефти (ОПЕК) [Электронный ресурс]. URL: [https://www.opec.org/assets/assetdb/annual-report-2024.pdf] (Дата обращения 25.11.2024)
- 2. Нетрадиционная нефть. Технологии, экономика, перспективы / Галкин Ю. В, Грушевенко Д. А., Грушевенко Д. А., и др. М.: Институт энергетических исследований РАН, 2019. С. 62.
- 3. Мазгаров А. М. Сернистые соединения углеводородного сырья: учебно-методическое пособие / А.М. Мазгаров, О.М. Корнетова. К.: Казан. ун-т, 2015. С. 5-6.
- 4 Коботаева Н. С., Скороходова Т. С. Окислительное обессеривание мазута в присутствии солей металлов переменной валентности и пероксида водорода // Башкирский химический журнал. 2023. Т. 30. №. 1. С. 78-82.
- 5. Жолнеркевич В. И., Шрубок А. О., Грушова Е. И. Окислительное обессеривание масляных фракций пероксидом водорода в присутствии ледяной уксусной кислоты // Химия. Экология. Урбанистика: материалы всероссийской научно-практической конференции с международным участием, 19–21 апреля 2023 года. Пермь: Пермский национальный исследовательский политехнический университет, 2023. С. 62-66.
- 6. Снижение содержания серы в жидких продуктах, получаемых экстракцией горючего сланца (краткое сообщение) / Анисимов А. В., Кардашев С. В., Акопян А. В. и др. // Химия твердого топлива. 2015. №. 5. С. 59-59.
- 7. Пат 2617415 Российская Федерация. Способ снижения содержания меркаптанов в углеводородах / ЛИ Линь, ХЭ Цзуньцин, Чжоу Чжэнь и др. Заявка № 2013124378 от 25.10.2011; опубл. 25.04.2017. Бюл. 12.

- 8. Катасонова О. Н., Савонина Е.Ю., Марютина Т.А. Экстракционные методы выделения серы и ее соединений из нефти и нефтепродуктов (обзор) // Журнал прикладной химии. 2021. Т. 94. №. 4. С. 411-439.
- 9. Пат. 2673539 Российская Федерация. Способ очистки дизельного топлива от серосодержащих соединений / Андриенко О. С.; Коботаева Н. С. Маракина Е. И и др. заявка № 2018123940 от 02.07.2018; опубл. 28.11.2018. Бюл. № 34.
- 10. Пат. 2541315 Российская Федерация. Способ очистки жидких моторных топлив от серосодержащих соединений / Нефедьева М. В. Заявка № 2013146610/04 от 18.10.2013; опубл. 10.02.2015. Бюл. № 4.
- Решение проблем экологии с помощью очистки нефти и газа от серосодержащих соединений / Исенгалиева Г. А., Балгынова А. М., Саркулова Ж.С. и др. //Вестник КазУТБ. 2024. Т. 2. №. 23. С. 26-34.
- 12. Влияние модифицирования цеолитных мембран натриемна их эффективность в процессе адсорбционного обессеривания / Гэн Д., Мяо Т., Чень Юли и др. // Химия и технология топлив и масел. 2015. №. 4. С. 11-14.
- 13. Theoretical and experimental study of the adsorption capacity of transition metal acetates in the process of desulfurization of a model hydrocarbon fuel / Okhlobystin A; Kamyshnikova A. et al //известия высших учебных заведений. Серия «химия и химическая технология». 2021. Т. 64. №. 12. С. 98-104.
- 14. Пат. 2230095 Российская Федерация. Способ очистки нефти от сероводорода / Фахриев А.М., Фахриев Р.А. Заявка № 2003109384/04 от 27.03.2003; опубл. 10.06.2004. Бюл. № 16.
- 15. Пат 2662154 Российская Федерация. Способ очистки углеводородных фракций от соединений серы / Андреев Б. В; Устинов А. С. Заявка № 2017130483 от 28.08.2017; опубл. 24.08.2018. Бюл. № 21.

- 16. Пат. 2670449 Российская Федерация. Способ получения высокоплотного реактивного топлива (варианты) / Максимов А. Л.; Самойлов В. О. Заявка № 2018118946 от 23.05.2018; опубл. 23.10.2018.
- 17. Пат 2353644 Российская Федерация. Способ гидроочистки нефтянных фракций / Ёлшин; А. и.; Сердюк Ф. И., Алиев Р.О. и др. Заявка № 2007141673/04 от 14.11.2007; опубл. 27.04.2009. Бюл. № 12.
- 18. Разработка способа извлечения молибденаиз отходов нефтехимической промышленности / Курмышева А. Ю., Сотникова Е.В., Графкина М.В. и др. // Безопасность в техносфере. 2013. Т. 2. №. 2. С. 62-65.
- 19. Перспективные технологии очистки нефтепродуктов от серы с применением электромагнитных полей / Шершнева В. А., Литвинова Т. А. // Булатовские чтения. 2021. Т. 2. С. 126-128.
- 20. Пат. 2098454 Российская Федерация. Способ обработки жидких углеводородов и устройство для его осуществления / Ивахник В.Г., Шахрова К. И., Спутников В.П и др. Заявка № 93053128/04 от. 25.11.1993, опубл. 10.12.1997.
- 21. Развитие катализаторов гидропроцессов нефтепереработки / Пинаева Л. Г., Климов О. В., Казаков М.О. и др. // Катализ в промышленности.
 2020. Т. 20. № 5. С. 391-406.
- 22. Новое поколение Al-Co-Mo-катализаторов нзк новокуйбышевского завода катализаторов для получения моторных топлив качества euro-3, euro-4 / Левин О. В., Усков В. И., Олтырев А.Г. и др. //Катализ в промышленности. 2008. N 2. C. 37-41.
- 23. Катализаторы гидроочистки / Солодова Н. Л., Нурмухаметова А. Р //вестник казанского технологического университета. 2017. Т. 20. №. 10. С. 53-60.
- 24. Состав продуктов термического разложения горючего сланца Коцебинского месторождения / Ромаденкина С. Б., Решетов В. А и др //химия твердого топлива. $2016. N_{\odot}. 1. C. 22-24.$

- 25. Экспериментальные исследования и эффективность использования золы бурых углей и горючих сланцев в асфальтобетонных смесях / Лиштван И. И., Ляхевич Г. Д., Ляхевич А. Г. и др. //Известия национальной академии наук Беларуси. Серия физико-технических наук. − 2016. − №. 3. − С. 118-124.
- 26. Шепалов А. Тяжелые нефти, газовые гидраты и другие перспективные источники углеводородного сырья: учебно-методическое пособие //Нижний Новгород: Нижегородский госуниверситет. 2012. С. 7.
- 27. Самойлик, В.Г. Классификация твёрдых горючих ископаемых и методы их исследований : [монография] / В.Г. Самойлик. Харьков : водный спектр Джи-Ем-пи, 2016. 308 с.
- 28. Исследование Коцебинского месторождения с целью производства композиционных строительных материалов на основе энерготехнологической переработки горючих сланцев / Мещеряков Д. В., Смилевец О. Д., Хаюк Н.В. и др. // Вестник саратовского государственного технического университета. 2010. T. 1. N 1 (44). С. 194-199.
- 29. Москаленко И. В. Некоторые вопросы кинетики термического разложения керогена //нефтегазовая геология. Теория и практика. 2024. Т. $19. N_{\odot}$. 2. С. 6.
- 30. Моделирование процесса гидроочистки углеводородного сырья / Панкратов И. С., Земляков А. Ю., Ромаденкина С. Б. // Ползуновский альманах. 2020. №. 1. С. 31-34.
- 31. Очистка нефтепродуктов от серы посредством электромагнитных полей / Шершнева В. А., Литвинова Т. А. // молодежная наука. Сборник лучших научных работ молодых ученых: общеуниверситетская студенческая научная конференция, Краснодар, 28 сентября 2020 года. Краснодар: Кубанский государственный технологический университет, 2021. С. 35-38.
- 32. Desulfurization and denitrogenation of light oils by methyl viologen-modified aluminosilicate adsorbent / Shiraishi Y., Yamada A., hirai t // energy & fuels. -2004. -T. 18. -N0. 5. -R. 1400-1404.

- 33. Пат. 2394632 Российская Федерация. Удаление серы с применением абсорбента из карбоната железа / Фарха Флойд. Заявка № 2008114508/15 от 15.09.2006; опубл. 20.10.2010. Бюл. 20.
- 34. Салтыкова с. Н., назаренко м. Ю. Анализ сланцепереработки в россии и за рубежом, основные проблемы и методы их решения //инновационные материалы и технологии в дизайне. 2017. С. 103-104.
- 35. Влияние содержания фосфора в носителе четырехкомпонентных NiMoW/p—Al₂O₃ катализаторов гидроочистки на их гидродесульфуризующую и гидрирующую активности / Солманов П. С., Максимов Н. М., Тимошкина В.В. и др. // Нефтехимия. 2019. Т. 59. №. 2. С. 194-199.
- 36. Каталитическая очистка сланцевой смолы горючего сланца Коцебинского месторождения / Ромаденкина С. Б., Сверчков А. А., Земляков А. Ю., и др. // химия твердого топлива. 2018. № 4. С. 47-49
- 37. Пат. 2310731 Российская Федерация. Мобильная буровая добывающая установка прямого и обратного действия / Илясов В. Н. Заявка № 2006108615/03 от 20.03.2006; опубл. 20.11.2007. Бюл. 32.
- 38. ГОСТ Р 54261-2010 Ресурсосбережение. Обращение с отходами и производство энергии. Стандартный метод определения высшей теплотворной способности и зольности отходов материалов. введен впервые; введен с 23.12.2010
- 39. ГОСТ 8420-74 Материалы лакокрасочные. Методы определения условной вязкости (с Изменениями N 1, 2). взамен ГОСТ 8420-57; введен с 17.05.74.