Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра теории функций и стохастического анализа

ОЦЕНИВАНИЕ РЕГРЕССИОННЫХ МОДЕЛЕЙ ДЛЯ ПАНЕЛЬНЫХ ДАННЫХ ОБОБЩЕННЫМ МЕТОДОМ МОМЕНТОВ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 412 группы направления 01.03.02 — Прикладная математика и информатика механико-математического факультета Донскова Игоря Вячеславовича

Научный руководитель	
старший преподаватель	 А. Д. Луньков
2000	
Заведующий кафедрой	
д. фм. н.	 С. П. Сидоров

ВВЕДЕНИЕ

Актуальность темы. В эконометрике до определенного момента активно развивались две методики, основанные на моделях перекрестных данных и моделях временных рядов. Каждый метод относился к определенному типу статистических данных. Классический регрессионный анализ применяется к перекрестным данным, для которых единицей наблюдения является некоторая пространственная, социальная или физическая единица, временные же ряды в качестве единицы выборки берут временной момент. Методология панельных данных синтезировала два вышеупомянутых метода. Она очень популярна, так как позволяет исследовать с помощью регрессионных моделей эффекты, присущие отдельным наблюдениям и строить более гибкие модели. Одним из современных методов оценивания моделей для панельных данных является обобщенный метод моментов. Он позволяет решать более масштабные задачи по сравнению с классическим методом моментов, давая однако некоторые погрешности в точности выполнения накладываемых условий.

Особенностью современных регрессионных моделей является наличие следующих составляющих: учет взаимосвязи между единицами наблюдения с помощью весовых матриц, учет как пространственных, так и временных эффектов, наличие обратных связей, учитываемых с помощью системы одновременных уравнений, наличие режимов переключения между видами моделей. Первой из упомянутых составляющих уделено внимание в этой работе.

Целью бакалаврской работы является оценивание параметров пространственных панельных регрессионных моделей, применительно к российским региональным данным, с помощью обобщенного метода моментов.

Объект исследования — панельные данные.

Предмет исследования — пространственные эконометрические модели для индекса цен на жилье, среднего дохода, прироста населения, плотности населения.

Для достижения поставленных целей в работе необходимо решить следующие **задачи**:

- рассмотреть модель парной регрессии и основные гипотезы связанные
 с этой моделью;
- определить основные гипотезы, лежащие в основе модели множественной регрессии, описать методику построения оценок её параметров;

- рассмотреть основные регрессионные модели для панельных данных;
- описать структуру моделей с фиксированным и случайным эффектом;
- изучить методы оценивания в частности, обобщенный метод моментов;
- описать построение регрессионной модели для панельных данных, и методику ее оценивания;
- создать код, позволяющий оценить параметры пространственной регрессионной модели для панельных данных с помощью обобщенного метода моментов;
- провести анализ полученных результатов. Помимо прочего, будет создана программа, позволяющая оценивать параметры регрессионной модели фиксированных эффектов для искусственно сгенерированных данных.

Практическая значимость. Исследована зависимость индекса цен на жилье в регионах от индекса цен в соседствующих регионах, дохода, плотности населения и миграционного прироста внутри региона. Модель построена на основе данных, полученных с портала http://www.gks.ru/ и может быть полезна для прогнозирования цен на жилье, выявления доходов, наиболее существенно влияющих на эту цену. Эта же методика может быть применена при переходе на более низкий уровень, от регионов к районам, при наличии информации, и может быть полезна деятельности муниципалитета. Создан программный продукт и проанализированы по реальным современным социально-экономическим данным зависимости между вышеперечисленными показателями. Результатам дана содержательная интерпретация.

Структура и содержание бакалаврской работы. Работа состоит из введения, пяти разделов, заключения, списка использованных источников, содержащего 20 наименований, и двух приложений. Общий объем работы составляет 40 страниц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность темы работы, формулируются цель работы и решаемые задачи.

В первом разделе рассматривается модель парной регрессии.

Подгонка кривой.

Ставиться задача подобрать («подогнать») функцию Y=f(X) из параметрического семейства функций $f(X,\beta)$, «наилучшим» способом описывающую зависимость Y от X.

В качестве меры отклонения функции $f(X,\beta)$ от набора наблюдений можно взять:

- 1. сумму квадратов отклонений $F = \sum_{t=1}^{n} (Y_t f(Xt, \beta))^2$,
- 2. сумму модулей отклонений $F = \sum_{t=0}^{n} t = 1|Y_t f(Xt, \beta)|$,
- 3. $F = \sum_{t=0}^{n} t = 1g(Y_t f(X_t, \beta))$, где g любое преобразование отклонения $Y_t f(X_t, \beta)$, входящего в функционал F.

Линейная регрессионная модель с двумя переменными.

Модель зависимости Y_t от X_t построим в виде

$$Y_t = a + bX_t + \varepsilon_t, \quad t = 1, \dots, n,$$

где X_t — неслучайная величина, а Y_t , ε_t — случайные величины. Y_t называется объясняемой (зависимой) переменной, а X_t — объясняющей (независимой) переменной или *регрессором*. Уравнение, приведенное выше, также называется *регрессионным уравнением*.

Основные гипотезы

- 1. $Y_t = a + bX_t + \varepsilon_t$, t = 1, ..., n, спецификация модели.
- 2. X_t детерминированная величина; вектор $(X_1,..., X_t)'$ неколлинеарен вектору r = (1,...,1)'.
- 3. $\mathrm{E}\varepsilon_t=0$, $\mathrm{E}(\varepsilon_t^2)=\mathrm{V}(\varepsilon_t)=\sigma^2$ не зависит от t.
- 4. $E(\varepsilon_t \varepsilon_s) = 0$ при $t \neq s$, некоррелированность ошибок для разных наблюдений.

Часто добавляется условие:

5. Ошибки ε_t , t = 1,..., n, имеют совместное нормальное распределение: $\varepsilon_t \sim N(0,\,\sigma^2)$.

В этом случае модель называется нормальной линейной регрессионной.

Проинтерпретируем гипотезы, лежащие в основе линейной регрессионной модели.

- 1. Спецификация модели отражает представление о механизме зависимости Y_t от X_t и сам выбор объясняющей переменной X_t .
 - 3-4. Эти условия в векторной форме могут быть записаны так:

$$E\varepsilon = 0, V(\varepsilon) = \sigma^2 I_n,$$

где $\varepsilon=(\varepsilon_1,...,\ \varepsilon_n)$ ' I_n — $n\times n$ единичная матрица, $V(\varepsilon)$ — $n\times n$ матрица ковариаций.

Условие $\mathrm{E} \varepsilon=0$ означает, что $\mathrm{E} Y_t=a+bX_t$, т. е. при фиксированном X_t среднее ожидаемое значение Y_t равно $a+bX_t$.

Условие независимости дисперсии ошибки от номера наблюдения (от регрессора X_t): $E(\varepsilon_t^2) = V(\varepsilon_t) = \sigma^2$, $t = 1, \ldots, n$, называется гомоскедастичностью.

Условие $E(\varepsilon_t \varepsilon_s) = 0$, $t \neq s$ указывает на некоррелированность ошибок для разных наблюдений. В случае, когда это условие не выполняется, говорят об автокорреляции ошибок.

Далее в разделе рассматриваются методы оценивания параметров a,b,σ^2 :

1. с помощью метода наименьших квадратов в предположении теоремы Гаусса-Маркова.

$$\hat{b} = \frac{n \sum X_t Y_t - (\sum X_t)(\sum Y_t)}{n \sum X_t^2 - (\sum X_t)^2},$$

$$\hat{a} = \frac{1}{n} \sum Y_t - \frac{1}{n} \sum X_t \hat{b} = \overline{Y} - \overline{X}\hat{b}.$$

A также оценка σ^2 :

$$\widehat{\sigma}^2 = \frac{1}{n-2} \sum e_t^2$$

2. с помощью метода максимального правдоподобия:

$$\hat{b}_{ML} = \frac{\sum x_t y_t}{\sum x_t^2}; \quad \hat{a}_{ML} = \overline{Y} - \hat{b}_{ML} \overline{X}; \quad \hat{\sigma}_{ML}^2 = \frac{1}{n} \sum e_t^2.$$

Во втором разделе рассмотрена модель множественной регрессии. Она является обобщением модели с двумя переменными:

$$y_t = \beta_1 x_{t1} + \beta_2 x_{t2} + \dots + \beta_k x_{tk} + \varepsilon_t, \quad t = 1, \dots, n,$$

где x_{tp} — значения регрессора x_p в наблюдении t, а $x_{t1}=1,\,t=1,\ldots,n$.

Основные гипотезы

Гипотезы, лежащие в основе модели множественной регрессии, являются естественным обобщением модели парной регрессии:

- 1. $y_t = \beta_1 + \beta_2 x_{t2} + \dots + \beta_k x_{tk} + \varepsilon_t, \quad t = 1, \dots, \ n,$ спецификация модели.
- 2. x_{t1}, \ldots, x_{tk} детерминированные величины. Векторы $x_s = (x_{1s}, \ldots, x_{ns})',$

s=1,...,k линейно независимы в \mathbb{R}^n .

3-5 совпадают с гипотезами парной регрессионной модели.

В этом случае модель называется нормальной линейной регрессионной. Далее в разделе оценивались следующие параметры:

$$\widehat{\beta}_{OLS} = (X'X)^{-1}X'y$$
 — методом наименьших квадратов,

$$\widehat{\sigma}^2 = \frac{e'e}{n-k} = \frac{\sum e_t^2}{n-k}$$

А также проверялась гипотеза линейного ограничения общего вида H_0 : $H\beta=r,$ с помощью следующей статистики:

$$F = \frac{(H\widehat{\beta} - r)'(H(X'X)^{-1}H')^{-1}(H\widehat{\beta} - r)/q}{e'e/(n-k)} \sim F(q, n-k).$$

Третий раздел посвящен панельным данным и построению для них основных регрессионных моделей. Панельные данные состоят из наблюдений одних и тех же экономических единиц или объектов. Сбор данных проводится в последовательные моменты времени.

Обозначение и основные модели

Вводятся обозначения. Пусть y_{it} – зависимая переменная для экономической единицы i в момент времени t, x_{it} – набор объясняющих (независимых) переменных (вектор размерности k) для той же единице и того же времени, и ε_{it} – соответствующая ошибка, $i=1,...,n,\ t=1,...,T$. При переходе к векторам используются обозначения

$$y_i = \begin{bmatrix} y_{i1} \\ \vdots \\ y_{iT} \end{bmatrix}, \quad X_i = \begin{bmatrix} x'_{i1} \\ \vdots \\ x'_{iT} \end{bmatrix}, \quad \varepsilon_i = \begin{bmatrix} \varepsilon_{i1} \\ \vdots \\ \varepsilon_{iT} \end{bmatrix}.$$

Вводятся также "объединенные" наблюдения и ошибки:

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_T \end{bmatrix}, \quad X = \begin{bmatrix} x_1' \\ \vdots \\ x_T' \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_T \end{bmatrix}.$$

(Здесь $y, \varepsilon - nT \times 1$ векторы, $X - nT \times k$ матрица.)

Простейшая модель – это обычная линейная модель регрессии в матрич-

$$y = X\beta + \varepsilon, \tag{1}$$

которая, по существу, не учитывает панельную структуру данных. При этом предполагается, что все ошибки ε_{it} некоррелированы между собой как по i, так и по t, и некоррелированы со всеми объясняющими переменными x_{it} . При выполнении этих предположений обычные МНК-оценки $\hat{\beta}_{OLS}$ являются состоятельными и эффективными.

Панельные данные позволяют учитывать индивидуальные различия между экономическими единицами. Одна из возможных реализаций этой идеи выглядит следующим образом:

$$y_{it} = \alpha_i + x'_{it}\beta + \varepsilon_{it}, \tag{2}$$

где величина α_i выражает индивидуальный эффект объекта i, не зависящий от времени t, при этом регрессоры x_{it} не содержат константу.

В зависимости от предположений относительно характера величины α_i рассматриваются две модели.

Модель с фиксированным эффектом (fixed effect model): предполагается, что в соотношении (2) величины α_i являются неизвестными параметрами.

Модель со случайным эффектом (random effect model): предполагается, что в соотношении (2) $\alpha_i = \mu + u_i$, где μ — параметр, общий для всех единиц во все моменты времени, а u_i — ошибки, некоррелированные с ε_{it} и некоррелированные при разных i.

Методы оценивания опираются на понижение размерности вектора неизвестных переменных (удаление среднего), на классический и обобщенный МНК. В общем случае оцениваются вектор коэффициентов β , α_i , дисперсия ошибки, дисперсия эффектов (в предположении случайного эффекта).

Модель с фиксированным эффектом

Модель с фиксированным эффектом (fixed effect model) описывается уравнением (2). Предполагается, что выполнены следующие условия:

- 1. ошибки ε_{it} некоррелированы между собой по i и t, $E(\varepsilon_{it}) = 0$, $V(\varepsilon_{it}) = \sigma_{\varepsilon}^2$;
- 2. ошибки ε_{it} некоррелированы с регрессорами x_{is} при всех i, j, t, s.

Если ввести фиктивные переменные для каждой экономической единицы: $d_{ij}=1$, если i=j, и $d_{ij}=0$, если $i\neq j$, то модель (2) может быть сведена

к более привычному виду линейной регрессии

$$y_{it} = \sum_{j=1}^{n} \alpha_j d_{ij} + x'_{it} \beta + \varepsilon_{it}$$
(3)

Это спецификация модели с фиксированным эффектом.

Если объединить все фиктивные переменные в одну матрицу

$$D = \begin{bmatrix} \imath_T & 0 & \dots & 0 \\ 0 & \imath_T & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \imath_T \end{bmatrix} = I_n \otimes \imath_T,$$

где вектор $i_T = [1, \dots, 1]'$ имеет размерность T, а I_n — единичная матрица размера n, и обозначить $\alpha = [\alpha_1, \dots, \alpha_n]'$, модель (3) можно по аналогии с соотношением (1) переписать в следующей матричной форме:

$$y = D\alpha + X\beta + \varepsilon$$
.

Далее в разделе получены оценки параметров:

$$\hat{\beta} = (X'M_D X)^{-1} X' M_D y, \quad \hat{\alpha}_i = \overline{y}_i - \overline{x}_i' \hat{\beta}_{FE}, \ i = 1, ..., n$$

$$\hat{\sigma}_{\varepsilon}^2 = \frac{1}{nT - n - k} \sum_{i=1}^{n} \sum_{j=1}^{T} (y_{it} - \overline{y}_i - (x_{it} - \overline{x}_i)' \hat{\beta}_{FE})^2.$$

Модель со случайным эффектом

Модель со случайным эффектом (random effect model) описывается уравнением

$$y_{it} = \mu + x'_{it}\beta + u_i + \varepsilon_{it}, \tag{4}$$

где μ - константа, а u_i - случайная ошибка, инвариантная по времени для каждой экономической единицы. Предполагается, что выполнены следующие условия:

- 1-2. пересекаются с условиями модели с фиксированным эффектом;
- 3. ошибки u_i некоррелированы, $E(u_i) = 0$, $V(u_i) = \sigma_u^2$;
- 4. ошибки u_i некоррелированы с регрессорами x_{ij} при всех i,j,t;
- 5. ошибки u_i и ε_{jt} некоррелированы при всех i,j,t.

Модель со случайным эффектом (4) можно рассматривать как линейную модель, в которой ошибка $\omega_{it}=u_i+\varepsilon_{it}$ имеет некоторую специальную структуру. Можно переписать соотношение (4) в виде

$$y_i = \mu i_T + X_i \beta + \omega_i$$

или, используя объединенные наблюдения, в матричной форме

$$y = \mu \imath_{nT} + X\beta + \omega.$$

Далее в разделе получены оценки параметров:

$$\begin{bmatrix}
\widehat{\mu}_{GLS} \\
\widehat{\beta}_{GLS}
\end{bmatrix} = \left(\begin{bmatrix}
\imath'_{nT} \\
X'
\end{bmatrix} (I_n \otimes \Sigma^{-1})[\imath_{nT} \quad X]\right)^{-1} \begin{bmatrix}
\imath'_{nT} \\
X'
\end{bmatrix} (I_n \otimes \Sigma^{-1})y.$$

$$\hat{\sigma}_u^2 = \hat{\sigma}_B^2 \frac{1}{T} \hat{\sigma}_{\varepsilon}^2.$$

В четвертом разделе описывается обобщенный метод моментов, который в настоящее время является одним из наиболее распространенных методов оценивания.

Предполагается, что модель включает переменные $y_i, x_i, z_i, i=1,\ldots,n,$ и пусть выполнены следующие равенства:

$$E(m_j(y_i, x_i, z_i, \theta)) = 0, \quad j = 1, \dots l,$$
 (5)

где $m_j (y_i, x_i, z_i, \theta)$ — некоторые известные скалярные функции, а θ — k-мерный вектор параметров. (В применении к моделям регрессии можно считать y_i зависимой переменной, x_i — набором регрессоров, z_i — инструментальными переменными, т.е. дополнительные, не участвующие в модели переменные, некоррелированные со случайными ошибками.)

Равенства (5) называются моментными тождествами или условиями ортогональности. Определим вектор функцию:

$$g(y, X, Z, \theta) = \frac{1}{n} \sum_{i=1}^{n} m(y_i, x_i, z_i, \theta)$$

Необходимо построить оценку параметров θ таким образом, чтобы, го-

воря нестрого, вектор $g(\theta)$ был как можно ближе к нулю. Например, найти оценку $\widehat{\theta}$ путем решения задачи

$$g'(\theta) g(\theta) = \sum_{j=1}^{l} g_j^2(\theta) \to min.$$
 (6)

Вместо минимизации суммы квадратов компонент вектора $g(\theta)$ можно было бы рассматривать более общую задачу, а именно,

$$g'(\theta) Sg(\theta) \to min,$$
 (7)

где S — некоторая симметричная положительно определенная матрица (размера $l \times l$). Оценка, полученная решением задачи (7), называется оценкой обобщенного метода моментов или GMM-оценкой (Generalized Method of Moments, GMM): $\widehat{\theta} = \widehat{\theta}_{GMM}$.

Ясно, что разным весовым матрицам S соответствуют разные (состоятельные) оценки $\widehat{\theta}_{GMM}$. Можно показать, что для получения асимптотически оптимальной оценки (т. е. имеющей минимальную асимптотическую матрицу ковариаций, предел которой известен, а сама матрица нет) в качестве S надо взять матрицу, обратную матрице ковариаций вектора моментов, которая (при отсутствии корреляции между наблюдениями) выглядит следующим образом:

$$S^{opt} = (E(m(y_i, x_i, z_i, \theta) m'(y_i, x_i, z_i, \theta)))^{-1}.$$
 (8)

На первом этапе находится оценка $\widehat{\theta}_{(0)}$ путем решения задачи (6) (т. е. с единичной весовой матрицей). Затем строится состоятельная оценка матрицы S^{opt} :

$$S_n^{opt} = \left(\frac{1}{n} \sum_{i=1}^n m\left(y_i, \ x_i, \ z_i, \ \widehat{\theta}_{(0)}\right) m'\left(y_i, \ x_i, \ z_i, \ \widehat{\theta}_{(0)}\right)\right)^{-1}$$

Наконец, решается задача (7) с S = S_n^{opt} и в результате получается оценка $\widehat{\theta}_{GMM}$. Два последних шага можно повторить.

Можно показать, что построенная таким образом оценка $\widehat{\theta}_{GMM}$ является асимптотически нормальной:

$$\sqrt{n}\left(\widehat{\theta}_{GMM}-\widehat{\theta}\right) \xrightarrow{d} N\left(0,V\right).$$

где
$$V = \left(DS^{opt}D'\right)^{-1}$$
, и $D = E\left(\frac{\partial m\left(y_i, \ x_i, \ z_i, \ \theta\right)}{\partial \theta'}\right)$.

Этот метод применим к панельным данным.

Пятый раздел посвящен описанию эмпирической части.

В ходе работы были собраны данные по расстояниям между административными центрами субъектов Российской Федерации. Было взято восемь-десят регионов РФ (краев, областей и республик). Были исключены Чукотский автономный округ и Камчатский край т.к. для них невозможно рассчитать расстояние по дорогам. Посчитаны расстояния между ними и занесены в таблицу Excel. Расстояния высчитывались несколькими способами:

- 1. с помощью сайта https://www.avtodispetcher.ru/, на котором можно рассчитать расстояние не только по дорогам, но и по прямой;
- 2. посредством формулы для расстояния по большой дуге (Great-circle distance).

$$d = r\Delta\sigma,\tag{9}$$

где $r\approx 6371$ – средний радиус Земли (в км), а $\Delta\sigma$ – угловая разница, которая высчитывается по модифицированной формуле гаверсинусов:

$$\Delta \sigma = \arctan \frac{\sqrt{(\cos \phi_2 \sin(\Delta \lambda))^2 + (\cos \phi_1 \sin \phi_2 - \sin \phi_1 \cos \phi_2 \cos(\Delta \lambda))^2}}{\sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos(\Delta \lambda)}$$
(10)

где λ_1, λ_2 – долгота и ϕ_1, ϕ_2 – широта двух точек в радианах, $\Delta \lambda$ – разность координат по долготе.

Формула (9) определяет расстояние между двумя точками на Земле используя их географические координаты, а именно долготы и широты. Кратчайшим расстоянием между ними является длина дуги круга, проведенного на сфере по этим двум точкам. Поскольку в расчете участвует радиус, а у Земли, как у не совсем правильной сферы, он разный, на северном полюсе (6356.752 км), а на экваторе (6378.137 км), то в расчетах берется среднее значение (6371.008 км), что дает погрешность около 0.5%.

Для полученных расстояний была построена обратная матрица, а также вычислены коэффициенты корреляции для среднего размера выборки (30 городов), что бы узнать зависимость изменения расстояний:

- 1. по формуле прямое = 0,988426115
- 2. прямое по дорогам = 0,979964874

3. по формуле – по дорогам = 0.951021915.

В результате видно, что коэффициент корреляции близок к единице, что свидетельствует о том, что расстояния коррелированы.

Эти данные будут использоваться для построения весовых матриц в задачах пространственной эконометрики. Такие матрицы являются необходимой составляющей в пространственных регрессионных моделях. Они позволяют описывать взаимосвязь между единицами наблюдения, в нашем случае между российскими регионами.

Создан код, позволяющий оценить параметры пространственной регрессионной модели для панельных данных с помощью обобщенного метода моментов, в бакалаврской работе разработана программа, позволяющая оценивать параметры модели фиксированных эффектов для искусственно сгенерированных данных.

В заключении приведены результаты бакалаврской работы.

Основные результаты

- 1. Рассмотрена модель парной регрессии.
- 2. Определены основные гипотезы, лежащие в основе модели множественной регрессии, описана методика построения оценок ее параметров.
- 3. Рассмотрены основные регрессионные модели для панельных данных, описана методика оценивания.
- 4. Изучен один из наиболее распространенных методов оценивания обобщенный метод моментов, заключающийся в таком выборе параметров, при котором некоторые соотношения для заданных наблюдений выполняются с минимальной возможной погрешностью.
- 5. По российским регионам был проведен предварительный анализ потенциальных весовых матриц. Было рассмотрено три вида весовых матриц: расстояние напрямую, по большой дуге и по дорогам. Корреляционный анализ установил значительную линейную зависимость между этими расстояниями. Это позволяет говорить о том, что можно пользоваться любой из этих матриц хотя бы в случае недостатка информации.

Создана программа, позволяющая оценивать параметры модели фиксированных эффектов для искусственно сгенерированных данных.