Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нефтехимии и техногенной безопасности

Расчет стабилизационной колонны нестабильного конденсата

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

по направлению1	8.03.01 «Химическая техноло	(кил)
•	код и наименование направления	
студента 4 курса	Института химии	
	наименование факультета, Ин	ститута
	Гасенко Дениса Алексеевича	
Научный руководитель		
Доцент, к.х.н.		И.А. Никифоров
должность, уч. ст., уч. зв.	подпись, дата	инициалы, фамилия
Заведующий кафедрой		
Профессор, д.х.н.		Р.И. Кузьмина
должность, уч. ст., уч. зв.	подпись, дата	инициалы, фамилия

Бакалаврская работа Гасенко Дениса Алексеевича «Расчет стабилизационной колонны нестабильного конденсата» состоит из следующих структурных элементов:

Введение;

Литературный обзор «Особенности стабилизации газовых конденсатов» состоящий из 3 разделов:

- Технология стабилизации конденсата дегазацией 2 стр.
- Технология стабилизации конденсата ректификацией 5 стр.
- Комплексная схема стабилизации 5 стр.

Экспериментальная часть «Оптимизация режима работы стабилизационной колонны», состоящая из 3 разделов:

- Существующая установка 2 стр.
- Расчет колонны с помощью пакета моделирующих программ ChemCAD 7 стр.
- Обсуждение результатов 13стр.

Выводы;

Заключение;

Список использованных источников.

Выпускная квалификационная работа представлена на 44 страницах, содержит 18 рисунков, 18 таблиц, список использованных источников содержит 22 наименования.

В нефтехимии важное значение имеет ценная бензиновая фракция, которая содержится в газовом конденсате. Следовательно, необходимо совершенствовать существующие технологии, которые помогают вовлекать газовый конденсат в переработку. Также нужно разрабатывать новые технологии, которые позволят увеличить эффективность разделения метанэтановой от более тяжелых фракций нестабильного конденсата.

Актуальность переработки газового конденсата на сегодняшний день заключается в значительно более лёгкой его, по сравнению с традиционным нефтяным сырьём, переработки и превращением в моторные топлива. Вопервых, газовый конденсат содержит в значительно меньших количествах вредные и опасные вещества, как для здоровья, так и для технологического процесса, по сравнению с традиционной нефтью. Например, практически отсутствуют серо- и азотсодержащие соединения, которые губительны как для жизни и здоровья человека, так и для каталитических процессов нефтепереработки: каталитического риформинга, гидроочистки, изомеризации и т.п.. Во-вторых, газовый конденсат в значительной мере требует меньших финансовых вложений для его добычи, нежели нефть, которую с каждым годом добывать становится все труднее. Нет необходимости строить цеха отстойников и электродегидраторов, чтобы избавиться от воды, добытой вместе с нефтью, что также существенно сказывается на себестоимости готового продукта, произведённого газового конденсата.

Ректификационные колонны – основное оборудование установок переработки газового конденсата.

Современная тенденция совершенствования различных ректификационных колонн характеризуется созданием аппаратов большой единичной мощности целью назначения для осуществления технологического процесса. Эти аппараты отличаются надежностью

Для сооружения и ввода в эксплуатацию новых и улучшения работы действующих колонн, необходимо знать конструктивные особенности аппаратов, рабочие параметры, колонных ИΧ a также передовой производственный ОПЫТ технологического обслуживания колонны обобщение предприятий. Анализ И родственных практических теоретических сведений о работе колонн позволяют квалифицированно выполнять пусконаладочные операции и стабильно управлять рабочими параметрами, а также получать максимальный выход целых продуктов при минимальных затратах сырьевых и энергетических ресурсов.

Не менее важной задачей при эксплуатации комплексов является обеспечение работоспособности ИΧ В экстремальных условиях установленной продолжительности рабочего цикла, так как при внезапном выходе хотя бы одного узла возможны остановки аппарата и нарушение технологического режима всей установки. Поэтому для выяснения причин разработке повреждения деталей И **УЗЛОВ** В мероприятий ИХ предотвращению, особое значение приобретают обобщение практического опыта работы и анализ процессов протекающих в колонне.

Установки первичной подготовки газового конденсата работают в регламентном режиме, в котором многие параметры варьируются в очень широких пределах и представляется актуальным настроить эти параметры так, чтобы получать больший выход ценного жидкого продукта. Целью выпускной квалификационной работы является оптимизация режима работы стабилизационной колонны, на примере установки стабилизации конденсата, входящей в состав ООО "Уренгойгазпром" Завод по подготовке конденсата к транспорту, с целью повышения ее эффективности.

Газовый конденсат – ценнейшее нефтехимическое сырье, представляющее интерес для перерабатывающих предприятий.

Как товарный продукт нестабильный газовый бензин не находит применения, но входящие в его состав пропан, изобутан, н-бутан, изопентан и т.д., а также стабильный газовый бензин, имеют широкое применение.

Сырой газовый конденсат, выносимый газом в виде капельной жидкости из скважины (10-500 г/м3) по своему составу более тяжелый и содержит углеводороды от этана (в малых количествах) до додекана (С12) и выше.

Конденсат представляет собой высокоэнергетическое сырьё (таблица 2), но для его транспортировки необходима предварительная подготовка, которая заключается в стабилизации путём отгонки легкокипящих газов.

Технология переработки этого конденсата включает процессы: стабилизации; обезвоживания и обессоливания; очистки от серосодержащих примесей; перегонки и выделения фракций моторных топлив (с последующим их облагораживанием).

Иногда стабильный конденсат смешивают со стабильной нефтью, тогда последние 3 процесса совмещены с технологией первичной переработки нефти.

Для стабилизации газового конденсата используются 3 метода:

- 1. Ступенчатое выветривание (сепарация, дегазация);
- 2. Ректификация в стабилизационных колоннах;
- 3. Комбинирование сепарации и ректификации.

1.1 Технология стабилизации конденсата дегазацией

Стабилизация газового конденсата дегазацией или сепарацией основана на снижении растворимости низкокипящих углеводородов в конденсатах при повышении температуры и понижении давления.

Обычно такая технология процесса стабилизации применяется на месторождениях, имеющих низкий конденсатный фактор.

Для стабилизации конденсата можно применять 1-, 2- и 3-ступенчатые схемы дегазации.

Выбор количества ступеней зависит от содержания низкокипящих углеводородов в конденсате: чем оно больше, тем необходимо большее число ступеней.

Это объясняется тем, что при увеличении числа ступеней доля отгона на каждой из них уменьшается, а уменьшение доли отгона влечет за собой и уменьшение уноса в газовую сферу целевых углеводородов конденсата.

1.2 Технология стабилизации конденсата ректификацией

Она имеет ряд преимуществ, в частности, энергия нестабильного конденсата рационально используется, полученный стабильный конденсат отличается низким давлением насыщенных паров и др.

Ректификационная стабилизация газового конденсата проводится чаще всего в 2-х или 3-х колоннах, что дает возможность, кроме газов стабилизации и стабильного конденсата, получить пропан-бутановую фракцию (или пропан и бутан).

1.3 Комплексная схема

На современных установках обычно применяют комбинирование процессов сепарации и ректификации, что позволяет повысить технологическую гибкость процесса и уменьшить энергозатраты.

2 Оптимизация режима работы стабилизационной колонны

2.1 Существующая установка

В настоящее время на Заводе по подготовке конденсата к транспорту (ЗПКТ) используется следующая технологическая схема (рисунок 1).

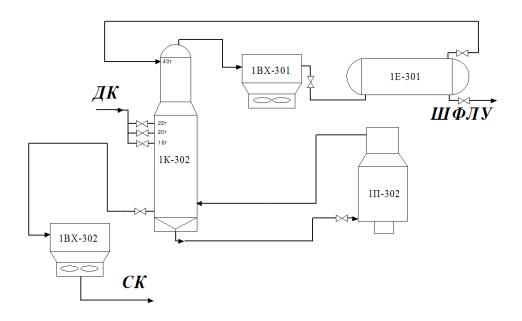


Рисунок 1 – Технологическая схема УСК на ЗПКТ.

2.2 Расчет колонны с помощью пакета моделирующих программ ChemCAD

Для оптимизации К-302 были приняты следующие исходные данные для моделирования, которые соответствуют регламентному режиму работы.

В качестве сырья для моделирования выбран состав, который соответствует составу деэтанизированного конденсата.

Исходные данные:

- Температура на входе: не более 200 °C;
- Давление в колонне: 0,5-1,3 МПа;
- Температура верха колонны: не более 150 °C;
- Температура низа колонны: не более 245 °C.

В таблице 1 представлен смоделированный поток деэтанизированного конденсата (ДК).

Таблица 1 – Смоделированный поток деэтанизированного конденсата

Поток сырья (ДК)	кг/ч
Пропан	22000
и-Бутан	8200
н-Бутан	8200
и-Пентан	12500
н-Пентан	12500
н-Гексан	14000
Всего	77400

2.3 Обсуждение результатов

В результате были подобраны оптимальные технологические параметры режима работы стабилизационной колонны.

- Температура на входе: 140 °C;
- Давление в колонне: 0,8 МПа;
- Температура верха/низа колонны: 120 °C/210°C;
- Флегмовое число 3,5;
- Номер тарелки питания 20.

Ниже представлен материальный баланс (таблица 2) с максимальной степенью разделения, которой можно было достигнуть.

Таблица 2 – Материальный баланс с максимальной степенью разделения

Поток №	1	2	3
Название потока	ДК	ШФЛУ	СК
Темп °C	140.0000	120.4983	210.7942
Давл Мра	0.8000	0.8000	0.8000
Энтал MJ/h	-1.7393E+005	-1.0053E+005	-73421
Общ. kmol/h	1334.3235	781.4616	552.8620
Общ. kg/h	77400.0000	37150.2534	40249.7564
Общ стд жид m3/h	134.7951	70.8316	63.9636
Общ стд пар m3/h	29907.05	17515.40	12391.65
Расходы в kmol/h			
Пропан	589.6226	589.6226	0.0000
І-Бутан	141.0801	140.6061	0.4747
Н-Бутан	141.0801	51.2328	89.8468
І-Пентан	173.2502	0.0000	173.2502
Н-Пентан	173.2502	0.0000	173.2502
Н-Гексан	116.0402	0.0000	116.0403

ВЫВОДЫ

В ходе выполнения выпускной квалификационной работы был проведен анализ зависимости эффективности работы стабилизационной колонны газового конденсата от различных технологических параметров.

Установлены некоторые тенденции и закономерности, а именно:

Выход стабильного конденсата и степень разделения растет при:

- повышении давления в колонне от 0,5 МПа до 0,8 МПа. С увеличением давления до 1,2 МПа производительность незначительно растёт, а степень разделения падает;
- повышении температуры в колонне (верх/низ колонны) от 60°C /150°C и до 120°C/210°C. С увеличением температуры до 150°C /240°C производительность незначительно растёт, а степень разделения падает;
- повышении температуры подаваемого в колонну сырья от 70°С и до 140°С. С увеличением температуры до 160°С производительность незначительно растёт, а степень разделения падает;

Степень разделения растет, а производительность снижается при:

- повышении флегмового числа от 2 до 5;
- изменении номера питающей тарелки от 22 к 18.

Колонна стабилизации производит максимальное количество стабильного конденсата (40250 кг/ч) со степенью разделения, равной 83%, при следующих условиях: давление в колонне 0,8 МПа, температура верха и низа колонны 120°С и 210 °С соответственно, температура сырья 140 °С, флегмовое число 3,5, номер тарелки питания 20.