Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра органической и биоорганической химии

ТЕТРАГИДРОНАФТАЛИН-1-ОН В МНОГОКОМПОНЕНТНЫХ ПРЕВРАЩЕНИЯХ С N-НУКЛЕОФИЛАМИ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки IV курса 412 группы направления 04.03.01 - органическая химия

Института химии

Айриян Аревик Арамовны

Научный руководитель: Доцент, к.х.н.		Мажукина О.А.
должность, уч. степень, уч. звание	подпись, дата	<u> Мажукина О.А.</u>
Зав. кафедрой:		
Д.х.н., профессор должность, уч. степень, уч. звание	подпись, дата	Федотова О.В.

Введение

Актуальность и цель работы

Производные пиримидина являются важным классом азагетероциклических соединений и ключевыми структурами во многих натуральных продуктах и биологически активных веществах, играющих исключительную роль в биоэнергетике организма, они определяют высокую практическую значимость исследований в данном направлении.

Известно, что развивающимся методом получения новых биологически активных соединений, включающих дигидропиримидиновый фрагмент, являются многокомпонентные реакции, которые протекают с участием трех или более соединений, реагирующих одновременно, но последовательно, с формированием нового продукта, содержащего основные структурные части всех исходных молекул. Прогресс ХИМИИ многокомпонентных реакций и повышенный интерес к ним по сравнению с традиционными многостадийными синтезами служит свидетельством большого синтетического потенциала этого подхода.

Примером такого типа взаимодействия является реакция Биджинелли, представляющая широкие возможности для синтеза новых веществ с фармакофорными фрагментами при действии таких азануклеофилов, как (тио)мочевина и аммиак.

Продукты реакции, дигидропиримидины, широко используются в фармацевтической промышленности в качестве блокаторов канала кальция, противогипертонических агентов и альфа-1n-антагонистов, противотуберкулёзных, противоопухолевых, противовирусных, кардиотропных препаратов. Данные свойства были также протестированы в программе PASS.

Большое внимание привлекают и производные веществ хиназолинового ряда из-за большого числа различных биологических и лечебных свойств. Например, они используются в качестве лигандов для

бензодиазепиновых и ГАМК-рецепторов в центральной нервной системе, являются ингибиторами фосфорилирования. Некоторые из них показывают замечательную активность в качестве противоопухолевых, противовирусных и противотуберкулёзных средств.

В связи с этим, целью настоящей работы явилось изучение сравнительного поведения 3,4-дигидронафталин-1(2*H*)-она в условиях классической реакции Биджинелли при нагревании в кислой среде с арилальдегидами и мочевиной, либо тиомочевиной, как нуклеофильными реагентами, а также при микроволновой активации реакционной массы в условиях ее «one-pot» проведения.

При этом в задачи исследования входило:

- 1) введение тетрагидронафталин-1-она в многокомпонентную «one-pot» модифицированную реакцию Биджинелли с ароматическими альдегидами и (тио)карбамдами;
- 2) установление влияния заместителей в ароматическом кольце и условий осуществления превращения на время протекания реакции, строение и выход продуктов реакции;
- 3) определение строения полученных продуктов методами ИК и ЯМР спектроскопии.

Научная новизна

Были модифицированные Биджинелли проведены реакции использованием ароматических альдегидов, (тио)мочевин, тетрагидронафталин-1-она И получены биологически активные тетрагидробензохиназолин(ти)оны. Также была установлена зависимость выхода и строения полученных продуктов от характера заместителя и условий протекания реакций.

Практическая значимость

Согласно результатам расчёта виртуального скрининга при помощи программы PASS, можно сделать вывод, что наибольшей активностью полученные соединения обладают в отношении ингибирования ферментов метаболизма стероидных гормонов. Кроме того, 4-(10b-гидрокси-2-оксо-1,2,3,4,4a,5,6,10b-октагидробензо[h]хиназолин-4-ил)бензойная кислота

является ингибитором альфа-4 бета-2 никотиновых рецепторов, играющих основную роль в развитии никотиновой зависимости и желании курить. Таким образом, полученные бензохиназолиноны могут быть рекомендованы как перспективные соединения для дальнейших фармакологических исследований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Многокомпонентные превращения с участием тетрагидронафталин-1-она

В последнее время многокомпонентные «one-pot» превращения привлекают все больше внимания исследователей, так как позволяют провести реакцию в одной колбе, без разделения стадий.

Ранее были найдены условия реакции Биджинелли (микроволновое излучение и нагревание в ионных жидкостях) применительно к тетрагидронафталин-1-ону. При этом, согласно классическому механизму, в качестве продуктов реакции быль выделены 3,4,5,6-тетрагидро-4-(4-R-фенил)бензо[h]хиназолин-2(1H)-(ти)оны.

В настоящем исследовании в модифицированной реакции Биджинелли, в зависимости от условий проведения синтеза и характера заместителя в альдегиде, кроме ожидаемых 3,4,5,6-тетрагидробензо[h]хиназолин-2(1H)-(ти)онов (4,5,6,8), были выделены интермедиаты их образования 1,4,4а,5,6,10b-гексагидро-10b-гидроксибензо[h]хиназолин -2(3H)-(ти)оны (7,9).

Реакция, предположительно, протекает по последующей схеме:

На первом этапе происходит нуклеофильная атака аминогруппы мочевины по карбонильному углероду альдегида с образования иминевого интермедиата (10), так называемого основания Шиффа. Далее полученный полупродукт вступает в конденсацию с енольной формой тетрагидронафталин-1-она. Последующая N-циклизация 12 и дегидратация 7,9 ведут к образованию целевого бензохиназалинона 4,5,6,8.

В ЯМР¹Н продуктов **4,5,6,8** присутствуют: синглет метинового протона в области 4.90-5.70 м.д., мультиплет метиленовых протонов в области 2.10-2.80 м.д., сигналы протонов амидных групп при 7.82-9.73 м.д.

В ЯМР¹Н спектрах полукеталей **7,9** сигналы метиленовых и метиновых протонов проявляются в виде мультиплетов в области 2.57-2.64 м.д. и 6.10-6.26 м.д. сооветственно; сигнал полукетального гидроксила отмечается при 4.50 м.д.

Также во всех соединениях присутствуют сигналы ароматических протонов в области 6.82-7.72 м.д.

Для соединений **6,7** синглеты протонов метоксильной группы фиксируются при 3.76-3.85 м.д. Синглеты протонов карбоксильных групп соединений **8,9** наблюдаются при 13.05 м.д.

Согласно данным двумерного спектра HSQC, отмечены корреляции метинового (5.00 м.д./60.0 м.д.) и метиленовых (2.50 м.д./40.0 м.д.) протонов с соответствующими углеродными атомами, отсутствие же корреляции в области 8.50 — 13.00 м.д. позволяет предположить, что протоны, имеющие химический сдвиг в этой области находятся у гетероатомов, что подтверждает предложенные структуры.

Рис. 1. ЯМР 1 Н спектр 4-(10b-Гидрокси-2-оксо-1,2,3,4,4a,5,6,10b-октагидробензо[h]хиназолин-4-ил)бензойной кислоты (9) (DMSO- d_6)

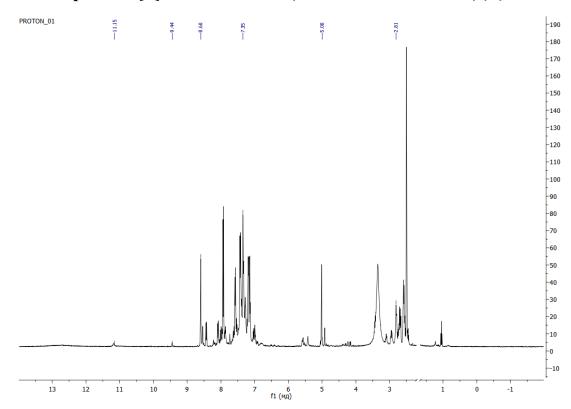


Рис. 2. ЯМР 1 Н спектр 4-(2-Оксо-1,2,3,4,5,6-гексагидробензо[h]хиназолин-4-ил) бензойной кислоты (8) (DMSO- d_{6})

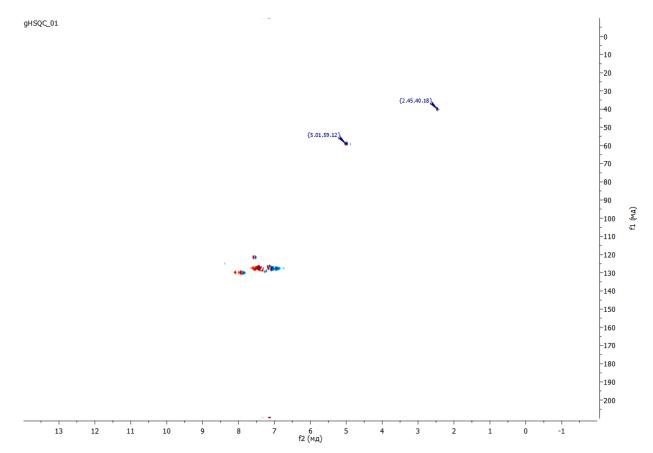


Рис. 3. Двумерный спектр HSQC 4-(2-Оксо-1,2,3,4,5,6-гексагидробензо[h]хиназолин-4-ил) бензойной кислоты (8) (DMSO- d_6)

 Таблица 1. Зависимость выходов замещенных бензохиназалинонов от условий протекания реакции и характера реагентов

№ соед.	R=	X=	Условие	Время, ч	Выход, %
(4)	-H	0	MW	2	1.5
(5)	-H	S	MW	45	5.5
(6)	-OCH ₃	S	MW	3	12
(7)	-OCH ₃	S	t ^o	28	31
(8)	-COOH	О	MW	1	60,5
(9)	-COOH	0	t°	96	12

Анализ экспериментальных данных показал, что выход и время протекания реакции зависят от условий проведения реакции и характера альдегидов. При проведении реакции в условиях микроволнового излучения

время образования продуктов сокращается в десятки раз, что обусловлено быстрым и значительным разогревом реакционной смеси и способностью МВ-излучения активировать молекулы реагентов.

Наибольший наблюдается выход для продуктов конденсации 4-формилбензойной тетрагидронафталин-1-она с кислотой, имеющей ароматическом сильную акцепторную группировку В кольце. Это обусловлено тем, ЧТО электроноакцепторный фрагмент приводит увеличению частично положительного заряда на атоме углерода карбонильной группы, что облегчает вступление альдегида в реакцию конденсации.

Таблица 2. Данные элементного анализа, ИК и ЯМР¹Н спектроскопии соединений 4,5,6,7,8,9

		Т.пл.°С	Найдено/Вычислено,		слено,		
№	Формула		%.			ИК, см ⁻¹	$ЯMP^1H,\delta,м.д.$
			С	Н	N		
4	NH NH O	223-225	74.35 74.88	6.16 6.65	10.87 10.52	1690 (C=O «Амид I») 1650 (NH, C-N «Амид II») 1610-1450 (Ar)	9.73 (с., 1H, NH) 7.82 (с.,1H, NH) 5.65 (с., 1H, CH) 2.55-2.90 (м. 4H, CH ₂) 7.26-7.72 (м., Ar)
5	NH	190-192	73.97 73.69	<u>5.48</u> 5.28	9.59 9.27	1280 (N-CS-N) 1130 (>C=S) 1630-1440 (Ar)	9.73 (с., 1H, NH) 7.82 (с., 1H, NH) 4.90 (с., 1H, CH) 2.55 - 2.70 (м. 4H, CH ₂) 7.12-7.40 (м., Ar)
6	OCH ₃ NH NH S	69-71	70.78 70.20	<u>5.63</u> 5.83	10.04 10.53	2900 (Ar-OCH ₃) 1300 (N-CS-N) 1050 (>C=S) 1500; 1600 (Ar)	7,82 (c.,1H,NH) 9.73 (c., 1H,NH) 3.89 (c., 3H, OCH ₃) 5.00 (c., 1H, CH) 2.68 -2.80 (m. 4H, CH ₂) 3.00 (m. 2H, CH ₂) 6.82-7.45 (m., Ar)

7	OCH ₃	163-165	65.39 65.91	<u>5.12</u> 5.22	7.95 8.50	2880 (Ar-OCH ₃) 3550 (ОН-своб.) 3300 (NH) 1280 (N-CS- N) 1130 (>C=S)	8.58 (д., 1H, NH) 9.57 (д.,1H, NH) 6.25 – 6.30 (м., 1H, CH) 5.75 (неразр.д. 1H, CH) 2.60 - 2.95 (м. 4H, CH ₂) 6.85-7.55 (м., Ar) 4.51 (с, 1H, OH) 3.94 (с, 3H, OCH ₃)
8	COOH NH NH	302-303	<u>71.44</u> 71.77	<u>5.36</u> 5.07	8.26 8.28	1691 (С=О алиф.) 1700 (<u>СО</u> ОН) 3243 (NH, C-N «Амид II») 3099-3061 (С-Н, Аг) 1609-1453 (Аг)	8.55 (c., 1H, NH) 9.45 (c., 1H, NH) 5.00 (c., 1H, CH) 2.52 - 3.20 (m. 4H, CH ₂) 7.26-7.72 (m., Ar) 13.00 (c, 1H, COOH)
9	COOH NH NH OOH H	256-259	67.44 66.90	4.79 4.86	8.33 8.20	1500 – 1600 (Ar) 1720 (Ar-COO-) 1690 (C=O) 3300 (NH) 2700(ОН-связ.)	10.15 (с., 1H, NH) 8.55 (с., 1H, NH) 6.10 - 6.25- (м., 1H, CH) 5.83 (неразр. д., 1H CH) 5.02 (с., 1H, OH) 2.55 -3.06 (м. 4H, CH ₂) 7.10-8.05 (м., Ar) 13.05 (с, 1H, COOH)

Выводы

- 1. Изучено взаимодействие тетрагидронафталин-1-она с (тио-)карбамидами ароматическими альдегидами, приводящее образованию И К бензохиназолинонов нового типа в условиях модифицированной «onepot» реакции Биджинелли при термическом И микроволновом воздействиях.
- **2.** Найдено, что электроноакцепторные группы в арилальдегиде увеличивают выход продуктов.
- **3.** Отмечено увеличение выхода целевых продуктов и сокращение времени реакции, при проведении модифицированной реакции Биджинелли в условиях микроволновой активации.
- **4.** Сочетанием методов ИК, ЯМР ¹Н и двумерной HSQC спектроскопии установлено строение вновь синтезированных соединений.