Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

<u>Кафедра динамического моделирования и биомедицинской инженерии</u> наименование кафедры

Реконструкция эквивалентных характеристик радиотехнических элементов по временным рядам тока и напряжения.

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

направления <u>12.03.04 «Биотехнические системы и технологии»</u> код и наименование направления								
и биомедицинских те	хнологий							
енование факультета								
а Евгения Михайлови	ча							
фамилия, имя, отчество								
подпись, дата	<u>И.В. Сысоев</u> инициалы, фамилия							
полнись дата	<u>Е.П. Селезнев</u> инициалы, фамилия							
	и биомедицинских те енование факультета а Евгения Михайлови фамилия, и							

Оглавление

Введение	3
Глава №1. Способ определения характеристик нелинейных устройств	4
1.1 Выбор объекта и постановка эксперимента	5
Глава №2	6
2.1 Методика реконструкции.	6
2.2 Реконструкция в режиме малых сигналов	7
2.3 Реконструкция в режиме больших сигналов	8
3. Результаты	10
4. Заключение	11
5. Литература	12

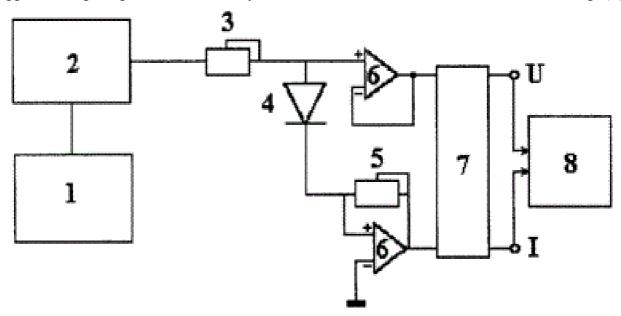
Введение

Развитие методов нелинейной динамики даёт возможность развить новые подходы к решению традиционных задач, а также взглянуть на практические важные задачи, решение которых прежде было невозможно или сопряжено с существенными трудностями и допущениями. В частности, исследование характеристик полупроводниковых устройств эквивалентных ранее воздействии проводилось только В гармонических режимах, при синусоидальным сигналом фиксированной частоты. Однако такие режимы далеки от практически интересных. Одним из способов преодоления данной проблемы может быть метод [5], основанный на решении обратной задачи: вольтамперных и вольт-фарадных характеристик таких реконструкции устройств, как полупроводниковые диоды, транзисторы, по временным рядам тока и напряжения на них. Суть метода заключается в том, что на исследуемый объект воздействуют сигналом, отражающим реальный режим эксплуатации системы. В качестве примера выбирают временные ряды тока и напряжения. С помощью законов Киргофа, составляют модельные уравнения, характеристики которых определяют с помощью реконструкций временных рядов.

Предлагаемый метод позволяет делать измерения в произвольном динамическом диапазоне и на любой частоте, ограничиваемой только электропрочностью объекта и возможностями аппаратуры: быстродействием операционных усилителей и частотой оцифровки АЦП.

Целью дипломной работы является исследование и освоение метода определения характеристик нелинейных устройств, реализации данного метода на языке программирования Pascal, построение и сравнение вольтфарадных характеристик диода.

Глава №1. Способ определения характеристик нелинейных устройств


Суть данного метода состоит в следующем. Составляется эквивалентное представление исследуемого устройства таким образом, чтобы в него непосредственно вошла искомая характеристика. Затем для составленного эквивалентного представления на основе законов Кирхгофа необходимо записать уравнения. Эти уравнения представляют собою модель. Одновременно на исследуемое устройство подаётся воздействие, в точности совпадающее с воздействием в его реальном режиме функционирования. Далее снимаются и оцифровываются ряды протекающих через него токов и напряжений на нём — они выступают в роли экспериментальных временных рядов (наблюдаемых). С помощью методов реконструкции уравнения модели восстанавливаются по этим рядам.

Способ обладает двумя неоспоримыми преимуществами перед ранее известными: он позволяет измерять искомые характеристики непосредственно в режиме эксплуатации, а также получать величины, недоступные прямому измерению.

1.1 Выбор объекта и постановка эксперимента

В качестве объекта исследования данного метода, был выбран выпрямительный диод КД202Р. В

В эксперименте (рис.1) через усилитель (2) У7-5 состоящий из регулируемого резистора (3) и устройство, характеристики которого хотим измерить (4), с генератора (1) сигнал подается на цепь. С помощью 14-ти разрядного двухканального аналого цифрового преобразователя ADM214-60 (7) с частотою оцифровки максимально достигающейся до 60 МГц и уровнем шума приблизительно равной 16 единиц младшего разряда и операционных усилителей MAX414EPD (6) со скоростью нарастания напряжения 4.6В/мкс, частотою усиления 28 МГц и уровнем шума 2.4нВ/Гц строятся временные ряды тока I(t) через изучаемого устройства (4) и напряжения U(t) на нём. Резистор (5) используется для изменения амплитуды сигнала на второй вход аналого цифрового преобразователя. Полученные данные считываются в компьютер (8)

[4]. Рис.1 схема установки: (1) генератор, (2) усилитель, (3) регулируемый резистор, (4) устройство, характеристики которого хотим измерить устройство, (5) резистор для изменения амплитуды сигнала на второй вход АЦП, (6) операционные усилители, (7) двухканальный АЦП, (8) компьютер [4].

Глава №2.

2.1 Методика реконструкции.

Написана программа на языке программирования Pascal для реализации данного метода. Первым шагом считываются данные, полученные с помощью установки, и записанные в файл. С помощью формулы обратного пересчета, где y — отсчет по каналу «0» (первая величина в файле данных), x — отсчет по каналу «1» (вторая величина в файле данных), y = 4 16 — постоянное смещение в АЦП по напряжению, I = 3 11 — постоянное смещение по току для АЦП ADM214-60, посчитаны сила тока и напряжения.

$$I = \frac{(x - I_0 \cdot 4) \cdot 4.93}{32768 \cdot R_1}$$

$$U = \frac{(y - U_0 \cdot 4) \cdot 5.05}{32768}$$
(1)

Уравнения Кирхгофа для изображённой на рис.1 схемы имеют с учётом этого представления вид:

$$I = \frac{-1}{R}U + \frac{1}{R}E(t) \tag{3}$$

$$I = I_{con}(U) + C(U)\frac{dU}{dt}$$
(4)

(3) — уравнение измерительного контура, (4) — уравнение для узла.

С помощью метода наименьших квадратов, реализованным на языке программирования pascal, подсчитываются коэффициенты емкости и проводимости. Количество коэффициентов зависит от степени полинома. Данные коэффициенты подставляются в формулу для ёмкости $C(U_i) = c_0 + c_1(U_i) + ... + c_n(U_i)$, где c_0 , c_1 и c_n коэффициенты емкости, и в формулу для проводимости $P(U_i) = p_0 + p_1(U_i) + ... + p_n(U_i)$, где p_0 , p_1 и p_n коэффициенты проводимости. После строятся графики зависимости (рис.4).

2.2 Реконструкция в режиме малых сигналов.

В режиме малых синусоидальных сигналов существует множество методов и изобретений для измерения вольт-фарадных характеристик диодов, каждый из которых работает только на своей частоте. Для тестирования метода использовали данные изобретения Е7-8 и Е7-12, работающие на частотах 1кГц и 1МГц. Каждый показывает значения емкости при произвольном смещении, но чисто на своей частоте. Данный метод может работать на любой частоте и в любой форме сигнала.

На рис. 2 представлены вольтфарадные характеристики исследуемого диода КД202Р на разных частотах, и для сравнения характеристики, измеренные с помощью приборов Е7-8 и Е7-12. Используется полиномиальные аппроксимации С(U) пятого порядка для восстановления вольтфарадных характеристик в режимах малых амплитуд, выбирая для сравнения с показаниями прибора ёмкость, соответствующем напряжению смещения, которое при больших отрицательных U почти совпадает с серединою диапазона.

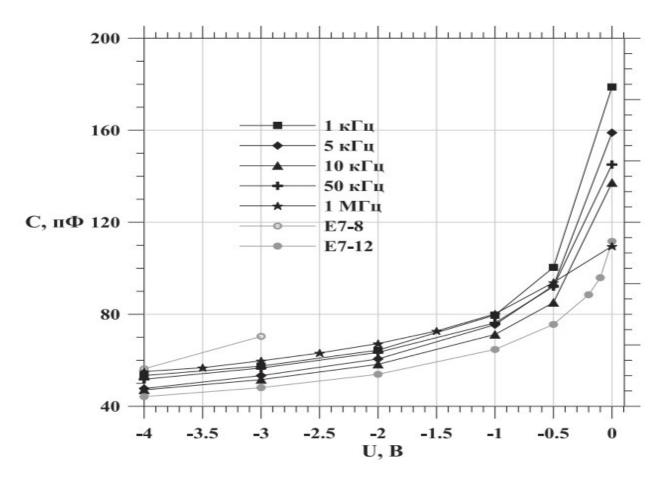


Рис. 2 вольтфарадные характеристики исследуемого устройства на частотах 1к Γ ц, 5к Γ ц, 10к Γ ц, 50к Γ ц и 1М Γ ц. [4].

При моделировании в режиме малых сигналов, когда подавались смещение и малый по амплитуде сигнал, I_{con} (U) и C(U) представлялись в виде полиномов 5-ого порядка. С экспериментальными данными сравнивались значение $C(U_0)$, где U_0 есть напряжение смещения, соответствующее середине диапазона изменения U(t). Несмотря на некоторый разброс по частотам видно, что результаты моделирования достаточно хорошо согласуются с экспериментальными измерениями.

2.3 Реконструкция в режиме больших сигналов.

При реконструкции уравнения (4) (восстановлении вольтфарадной и вольтамперной характеристик) I_{con} (U) и C(U) представлялись тремя способами: в виде полиномов, I_{con} (U) в виде полинома, а C(U) — двух полиномов, моделирующих барьерную и диффузионную ёмкости и исходя из физических соображений в виде (5,6):

$$I_{con}[U] = a_1 + a_2 \cdot e^{\beta \cdot U} \tag{5}$$

$$C(U) = a_3 + \xi(U) \cdot a_4 \cdot e^{\beta \cdot U} + \xi(-U) \cdot a_5 \cdot |1 + \beta_3 \cdot U|$$
(6)

где $\xi(U) \cdot a_4 \cdot e^{\beta \cdot U}$ диффузионная ёмкость, $\xi(-U) \cdot a_5 \cdot |1 + \beta_3 \cdot U|$ - барьерная, функция $\xi(U) = \frac{1}{2} (1 + t \, h \big| y_1 U + y_2 \big|)$ введена для обеспечения гладкости кривой. В случае полиномиального, кусочно-полиномиального и локально- линейного представлений достаточно было применить линейный метод наименьших квадратов, так как все параметры входят в модель линейно В последнем случае используется один из вариантов нелинейного метода наименьших квадратов, а взятые из физических соображений значения коэффициентов $\beta_4 = -0.5$ использовались как начальные приближения для этих параметров.

Для реконструкции уравнения (2) (ЭДС) введено обозначение $E_n[t] = E(t)/R$, функция $E_n[t]$ представляется в виде тригонометрического полинома порядка ${\bf k}$

$$E_n(t) = \frac{a_0}{2} + \sum_{i=1}^k a_j \cdot \cos(j \cdot \omega \cdot t) + b_j \cdot \sin(j \cdot \omega \cdot t)$$
(7)

Показано, что амплитуда и сопротивление R источника ЭДС могут быть восстановлены с точностью до 10^{-2} , частота - 10^{-2} .

3. Результаты

Таблица данных

Имя файла	DODINGTO	Напряжен ие воздейств ия, В	Сопротивле ние R Ом	Сопротивл ение R ₁ Ом	Частота стробиров ания кГц	Тип АЦП	Примечание
a0032	1030	1.961	1321	1567	1000	ADM 214-60	
a0033	5020	1.961	1321	1567	5000	ADM 214-60	D 2
a0033	10.07кГц	1.961	1321	1567	50000	ADM 214-60	Рис. 3
a0033	100.18кГц	1.961	1321	1567	50000	ADM 214-60	

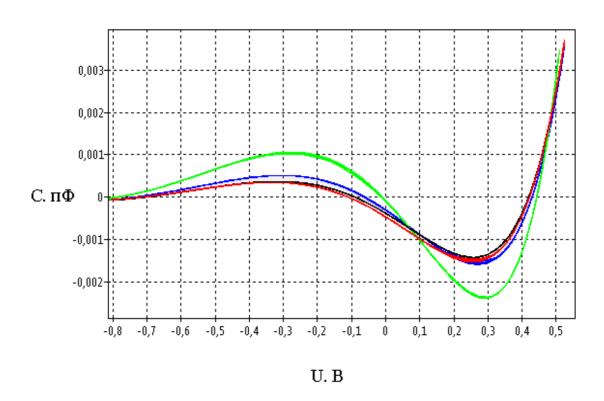


Рис. 3 вольтфарадные характеристики диода типа КД202Р, реконструированные предлагаемым методом , черный - на частоте 1030Γ ц, красный — на частоте 5020Γ ц, синий - на частоте 10.07к Γ ц, зеленый — на частоте 100.18к Γ ц.

4. Заключение

Освоен метод обработки и построение вольт-амперных и вольтфарадных характеристик полупроводниковых элементов по временным рядам методом решения обратной задачи. Рассмотрены различные способы аппроксимации искомых характеристик: в специальном виде (исходя из физических соображений), полиномиальная, кусочно-полиномиальная и локально-линейная.

Подготовлена программа для реализации данного метода. Результаты, сопоставлены с показаниями приборов и с показаниями с помощью данного метода на разных частот. Показано также, что данный способ позволяет проводить измерения нелинейных характеристик в сложных режимах, когда эталонные приборы не работают.

5. Литература

- 1. Пасынков В.В., Черкин Л.К., Шинков А.Д. Полупроводниковые приборы: Учебник для вузов. 3-е изд., перераб. и доп. М.: Высш. Школа, 1981. 431 с., ил.
- 2. Д.А. Смирнов, И.В. Сысоев, Е.П. Селезнев, Б.П Безручка. Реконструкция моделей неавтономных систем с дискретными спектром воздействия // Письма в ЖТФ, 2003, т.29, вып. 19. С 69-76.
- 3. Bezruchko B.P. and Smirnov D.A. "Constructing of nonautonomous differential equations from experimental time series", Phys. Rev. E, 2000, Vol. 63, 016207.
- 4. Сысоев Илья Вячеславович. Реконструкция уравнений колебательных систем при наличии скрытых переменных и внешних воздействий: дис. канд. физ.-мат. наук: 01.04.03 Саратов, 2007 150 с. РГБ ОД, 61:07-1/673
- 5. Пат. № 2265859 Российская Федерация. Способ Определения Характеристик Нелинейных Устройств/Автор(ы): Безручко Б.П., Селезнев Е.П., Смирнов Д.А., Сысоев И.В.; заявитель и патентообладатель Саратовский государственный университет им. Н.Г. Чернышевского № 2004115469/28; заявл. 24.05.2004, опубл. 10.12.2005.