Министерство образования и науки РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра дифференциальных уравнений и прикладной математики

Разложение по корневым функциям пучков дифференциальных операторов

наименование темы выпускной квалификационной работы полужирным шрифтом

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки <u>2</u> курса <u>215</u> групп	ПЫ	
направления 01.03.02 – Прикладная математика и информатика		
код и на	именование направления	
механико-м	математического факультет	га
наимено	ование факультета, института, колл	п еджа
Чаркин	ной Ольги Александровны	
	фамилия, имя, отчество	
Научный руководитель		
к.фм.н., доцент		В. С. Рыхлов
уч. степень, уч. звание	дата, подпись	инициалы, фамилия
Зав. кафедрой		
д.фм.н., профессор		А. П. Хромов
уч. степень, уч. звание	дата, подпись	инициалы, фамилия

Введение

В теории краевых задач для обыкновенных дифференциальных операторов важное значение имеют вопросы, связанные с изучением спектральных свойств собственных и присоединённых функций, а именно, с исследованием полноты, базисности, возможности разложения в обобщенные ряды Фурье и т.д. Основополагающие результаты в этой области восходят к Г.Д. Биркгофу [1, 2] и В.А. Стеклову [3]. Другими исследователями получено дальнейшее их развитие и обобщение, для широких классов дифференциальных и интегродифференциальных операторных пучков и различных типов граничных условий.

Сложность задачи о разложимости в обобщенные ряды Фурье связана с асимптотическим поведением функции Грина при $|\lambda| \to \infty$. В регулярном и почти регулярном случаях, в терминологии Наймарка [5], она имеет не более чем степенной рост, что позволяет достаточно просто изучать спектральные свойства дифференциальных операторов. Нерегулярный случай, для которого характерен экспоненциальный рост функции Грина в некоторых секторах, представляет наибольшую сложность. В этом случае возникают серьезные трудности при исследовании спектральных свойств рассматриваемых операторов.

Бакалаврская работа посвящена изучению квадратичных по λ пучков дифференциальных операторов $L(\lambda)$ 2-го порядка с постоянными коэффициентами, с граничными условиями, линейными по λ :

$$\ell(y,\lambda) = y'' + \lambda p_1 y' + \lambda^2 p_2 y = 0,$$

$$U_j(y,\lambda) = \alpha_{j1} y'(0) + \lambda \alpha_{j0} y(0) + \beta_{j1} y'(1) + \lambda \beta_{j0} y(1) = 0, \quad j = 1, 2.$$

Краевые задачи, относящиеся к этому типу, изучались в работах А.И. Вагабова [17, 18] и В.С. Рыхлова [19–20], где для них было показано, что соответствующая система собственных функций не является двукратно полной, изучен вопрос об однократной полноте, и получено обобщение этих результатов на случай операторных пучков *n*-го порядка. Также, В.С. Рыхловым [25,26] были найдены двукратные разложения в ряд Фурье по собственным и присоединённым функциям и сформулированы необходимые и достаточные условия сходимости этих разложений в виде дифференциального уравнения для компонент разлагаемой векторфункции.

Целью работы является доказательство теоремы о разложимости по корневым функциям рассматриваемой краевой задачи для двух случаев, в зависимости от кратности корней характеристического уравнения пучка. Работа состоит из введения и двух глав. Во введении описывается решаемая проблема и ее актуальность, содержатся краткие сведения о данной работе и полученных в ней результатах.

Первая глава посвящена случаю, когда характеристическое уравнение пучка имеет различные положительные корни, вторая глава — случаю, когда характеристическое уравнение имеет кратный корень. Каждая глава содержит 4 раздела, организованных по следующей схеме:

• Переход к эквивалентной матричной формулировке $\hat{L}Y = \lambda Y$.

- Построение резольвенты $(\hat{L} \lambda E)^{-1}$.
- Для заданной вектор-функции F, частичные суммы ряда Фурье по собственным в.-ф. оператора \hat{L} строятся по методу Коши–Пуанкаре путем интегрирования резольвенты по последовательности расширяющихся контуров в комплексной плоскости спектрального параметра λ :

$$I_{\nu} = -\frac{1}{2\pi i} \int_{\Gamma_{\nu}} (\hat{L} - \lambda E)^{-1} F \, d\lambda.$$

В качестве Γ_{ν} принимаются окружности радиуса $r_{\nu} \to \infty$ при $\nu \to \infty$. Для интегралов I_{ν} выводятся асимптотические формулы

$$I_{\nu} = J[F] + o(1), \quad \nu \to \infty.$$

• В пределе $\nu \to \infty$ получается свойство разложимости для функции F:

$$J[F] = F$$
,

анализ которого и даёт решение задачи в виде некоторых дифференциальных уравнений на функцию F.

Построение резольвенты $L(\lambda)$ эквивалентно решению неоднородной краевой задачи

$$\ell(v_0, \lambda) = f(x, \lambda), \qquad U_j(v_0, \lambda) = a_j, \quad j = 1, 2.$$

Её решение находится явно, методом вариации произвольных постоянных. При этом можно не делать никаких предположений о коэффициентах граничных условий, то есть, формулы для резольвенты годятся и в регулярном, и в нерегулярном случаях.

Способ построения частичных сумм ряда Фурье при помощи контурных интегралов вида I_{ν} используется, начиная с работ Г.Д. Биркгофа [2] и Я.Д. Тамаркина [4].

Вывод асимптотических формул проводится в сильно нерегулярном случае и при ряде дополнительных ограничений на параметры задачи. Эта часть работы наиболее сложна технически, так как получение оценок требует выделения слагаемых, имеющих экспоненциальный рост на бесконечности.

Ответы, полученные при анализе условия J[F] = F, имеют вид дифференциальных уравнений для компонент функции F. Эти уравнения, определяющие необходимые и достаточные условия разложимости, и являются основным результатом работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе рассматривается краевая задача для квадратичного пучка дифференциальных операторов второго порядка с постоянными комплексными коэффициентами

$$\ell(y,\lambda) := y'' + \lambda p_1 y' + \lambda^2 p_2 y = 0,$$

$$U_j(y,\lambda) := \alpha_{j1} y'(0) + \lambda \alpha_{j0} y(0) + \beta_{j1} y'(1) + \lambda \beta_{j0} y(1) = 0, \quad j = 1, 2,$$

где $p_1, p_2, \alpha_{ji}, \beta_{ji} \in \mathbb{C}$. Предполагается, что корни ω_1, ω_2 характеристического уравнения пучка $L(\lambda)$ различны и положительны. Характеристический определитель пучка равен

$$\Delta(\lambda) = \lambda^2 (a_{\bar{1}\bar{2}} + e^{\lambda\omega_1} a_{1\bar{2}} + e^{\lambda\omega_2} a_{\bar{1}2} + e^{\lambda(\omega_1 + \omega_2)} a_{12}),$$

где константы $a_{\bar{1}\bar{2}}, a_{1\bar{2}}, a_{\bar{1}2}, a_{12}$ явно вычисляются по фундаментальной системе решений.

Определение 1. (М.А. Наймарк, А.А. Шкаликов [5,11]). Краевая задача называется регулярной по Биркгофу, если $a_{\bar{1}\bar{2}} \neq 0$ и $a_{12} \neq 0$. Задача называется сильно нерегулярной, если выполняется одно из следующих условий:

$$a_{12}=0$$
 или $a_{12}=a_{\bar{1}2}=0$ или $a_{\bar{1}\bar{2}}=0$ или $a_{\bar{1}\bar{2}}=a_{1\bar{2}}=0$.

В регулярном случае получение теоремы о разложении по корневым функциям не представляет трудностей. Бакалаврская работа посвящена разбору сильно нерегулярного случая $a_{\bar{1}\bar{2}}=a_{1\bar{2}}=0.$

• В разделе 1.1 краевая задача приводится к эквивалентному матричному виду

$$\hat{L}v = \lambda v$$
, $U_i(v) = 0$, $j = 1, 2$,

где линейный оператор \hat{L} действует на вектор-функции $v=(v_0,v_1)^{\top}$ согласно формуле

$$\hat{L}v := \begin{pmatrix} 0 & 1 \\ -\frac{1}{p_2} \frac{d^2}{dx^2} & -\frac{p_1}{p_2} \frac{d}{dx} \end{pmatrix} v.$$

ullet В разделе 1.2 строится резольвента оператора \hat{L} , что эквивалентно решению неоднородной краевой задачи

$$\ell(v_0, \lambda) = f(x, \lambda), \qquad U_j(v_0, \lambda) = a_j, \quad j = 1, 2.$$

Её решение находится явно, в квадратурах, методом вариации произвольных постоянных.

Теорема 1. Решение $v_0(x,\lambda)$ имеет вид

$$v_{0}(x,\lambda) = \frac{1}{\lambda \Delta_{0}} \left(b_{1} a_{1\bar{2}} e^{\lambda \omega_{1} x} + b_{1} a_{12} e^{\lambda(\omega_{1} x + \omega_{2})} - b_{2} a_{2\bar{2}} e^{\lambda \omega_{1} x} + e^{\lambda \omega_{1} x} |AV_{2}| + e^{\lambda(\omega_{1} x + \omega_{2})} |AW_{2}| \right)$$

$$+ b_{1} a_{\bar{1}1} e^{\lambda \omega_{2} x} - b_{2} a_{\bar{1}2} e^{\lambda \omega_{2} x} - b_{2} a_{12} e^{\lambda(\omega_{1} + \omega_{2} x)} + e^{\lambda \omega_{2} x} |V_{1}A| + e^{\lambda(\omega_{1} + \omega_{2} x)} |W_{1}A| \right)$$

$$+ \frac{1}{\lambda(\omega_{2} - \omega_{1})} \int_{0}^{x} (e^{\lambda \omega_{2}(x - t)} - e^{\lambda \omega_{1}(x - t)}) f(t, \lambda) dt.$$

• Раздел 1.3 посвящен вопросу о разложении вектор-функции f в биортогональный ряд Фурье по собственным вектор-функциям оператора \hat{L} . Известно [2,4], что частичные суммы такого разложения совпадают с интегралами вида

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} (\hat{L} - \lambda E)^{-1} f \, d\lambda,$$

по контурам Γ_{ν} в комплексной плоскости спектрального параметра λ , охватывающим конечное число собственных значений пучка $L(\lambda)$. В качестве таких контуров принимаются окружности радиуса r_{ν} , такие, что $r_{\nu} \to \infty$ при $\nu \to \infty$. Основной результат этого раздела заключается в выводе асимптотических формул для контурных интегралов, с использованием Теоремы 1.

В качестве дополнительных предположений далее принимается, что

$$f_0(0) = f_0(1) = 0, \quad a_{12} = 0.$$

С учетом этих предположений, для v_0 получается представление вида

$$v_0(x,\lambda) = A_1(x,\lambda) + h(x,\lambda) + A_2(x,\lambda) + g(x,\lambda),$$

где:

$$\begin{split} A_{1}(x,\lambda) &= \frac{1}{\lambda(\omega_{2}-\omega_{1})\Delta_{0}} \Big(a_{1\bar{2}} \int\limits_{0}^{1} e^{\lambda(\omega_{1}x+\omega_{1}(1-t))} \tilde{f}(t) dt - a_{2\bar{2}} \int\limits_{0}^{1} e^{\lambda(\omega_{1}x+\omega_{2}(1-t))} \tilde{f}(t) dt \\ &+ a_{\bar{1}1} \int\limits_{0}^{1} e^{\lambda(\omega_{2}x+\omega_{1}(1-t))} \tilde{f}(t) dt - a_{\bar{1}2} \int\limits_{0}^{1} e^{\lambda(\omega_{2}x+\omega_{2}(1-t))} \tilde{f}(t) dt \Big); \\ h(x,\lambda) &= \frac{1}{\lambda(\omega_{2}-\omega_{1})} \int\limits_{0}^{x} (e^{\lambda\omega_{2}(x-t)} - e^{\lambda\omega_{1}(x-t)}) \tilde{f}(t) dt; \\ A_{2}(x,\lambda) &= -\frac{p_{2}}{(\omega_{2}-\omega_{1})\Delta_{0}} \Big(a_{1\bar{2}} \int\limits_{0}^{1} e^{\lambda(\omega_{1}x+\omega_{1}(1-t))} f_{0}(t) dt - a_{2\bar{2}} \int\limits_{0}^{1} e^{\lambda(\omega_{1}x+\omega_{2}(1-t))} f_{0}(t) dt \\ &+ a_{\bar{1}1} \int\limits_{0}^{1} e^{\lambda(\omega_{2}x+\omega_{1}(1-t))} f_{0}(t) dt - a_{\bar{1}2} \int\limits_{0}^{1} e^{\lambda(\omega_{2}x+\omega_{2}(1-t))} f_{0}(t) dt \Big); \\ g(x,\lambda) &= -\frac{p_{2}}{\omega_{2}-\omega_{1}} \int\limits_{0}^{x} (e^{\lambda\omega_{2}(x-t)} - e^{\lambda\omega_{1}(x-t)}) f_{0}(t) dt. \end{split}$$

Далее, равенство $v_0=A_1+h+A_2+g$ интегрируется по круговым контурам Γ_{ν} . При этом, учитывается, что функции $g(x,\lambda)$, $h(x,\lambda)$ являются целыми аналитическими в комплексной плоскости λ и интегралы от них по любому замкнутому контуру равны нулю. Чтобы получить оценку интеграла, разобъём контур на дуги Γ_{ν}^+ — часть Γ_{ν} при $\mathrm{Re}\,\lambda \geq 0$, и Γ_{ν}^- — часть Γ_{ν} при $\mathrm{Re}\,\lambda < 0$. Прежде всего, можно доказать, что вклад интеграла по Γ_{ν}^- асимптотически мал.

Утверждение 2. Имеет место оценка

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} v_0(x,\lambda) d\lambda = -\frac{1}{2\pi i} \int_{\Gamma_{\nu}^+} (A_1(x,\lambda) + A_2(x,\lambda)) d\lambda + o(1), \quad \nu \to \infty.$$

Для слагаемых A_1, A_2 доказываются следующие оценки.

Утверждение 3. Имеет место оценка

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}^{+}} A_{1}(x,\lambda) d\lambda = \frac{1}{\omega_{2} - \omega_{1}} \left(e_{2} p_{2} F_{1} \left(\frac{x}{\tau} \right) + e_{1} p_{2} F_{1}(\tau x + 1 - \tau) - p_{2} F_{1}(x) \right) - e_{2} p_{1} f_{0} \left(\frac{x}{\tau} \right) + e_{1} p_{1} f_{0}(\tau x + 1 - \tau) - p_{1} f_{0}(x) + o(1), \quad \nu \to \infty.$$

Утверждение 4. Имеет место оценка

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}^{+}} A_{2}(x,\lambda) d\lambda = \frac{1}{\omega_{2} - \omega_{1}} \left(-\frac{e_{2}p_{2}}{\omega_{2}} f_{0}\left(\frac{x}{\tau}\right) + \frac{e_{1}p_{2}}{\omega_{1}} f_{0}(\tau x + 1 - \tau) - \frac{p_{1}}{\omega_{2}} f_{0}(x) + o(1), \quad \nu \to \infty.$$

Утверждение 5. Имеет место асимптотическая формула

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} v_1(x,\lambda) d\lambda = -\frac{1}{2\pi i} \int_{\Gamma_{\nu}^{\pm}} (B_1(x,\lambda) + B_2(x,\lambda)) d\lambda + o(1), \quad \nu \to \infty.$$

Утверждение 6. Имеет место оценка

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}^{+}} B_{1}(x,\lambda) d\lambda = \frac{p_{2}}{\omega_{2} - \omega_{1}} \left(-\frac{e_{2}}{\omega_{2}} f_{1} \left(\frac{x}{\tau} \right) + \frac{e_{1}}{\omega_{1}} f_{1}(\tau x + 1 - \tau) - \frac{1}{\omega_{2}} f_{1}(x) \right) + \frac{p_{1}}{\omega_{2} - \omega_{1}} \left(-\frac{e_{2}}{\omega_{2}} f'_{0} \left(\frac{x}{\tau} \right) + \frac{e_{1}}{\omega_{1}} f'_{0}(\tau x + 1 - \tau) - \frac{1}{\omega_{2}} f'_{0}(x) \right) + o(1), \quad \nu \to \infty.$$

Утверждение 7. Имеет место оценка

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}^{+}} B_{2}(x,\lambda) d\lambda = \frac{p_{2}}{\omega_{2} - \omega_{1}} \left(-\frac{e_{2}}{\omega_{2}^{2}} f_{0}'\left(\frac{x}{\tau}\right) + \frac{e_{1}}{\omega_{1}^{2}} f_{0}'(\tau x + 1 - \tau) - \frac{1}{\omega_{2}^{2}} f_{0}'(x) \right) + o(1), \quad \nu \to \infty.$$

Собирая все вместе, получаем следующую теорему, которая является основным результатом раздела 1.3.

Теорема 8. При $\nu \to \infty$ выполняются следующие асимптотические формулы:

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} v_0(x,\lambda) d\lambda = \frac{p_2}{\omega_2 - \omega_1} \left(-e_2 F_1 \left(\frac{x}{\tau} \right) + e_1 F_1 (\tau x + 1 - \tau) - F_1(x) \right) + \frac{p_1 \omega_2 + p_2}{\omega_2 - \omega_1} \left(-\frac{e_2}{\omega_2} f_0 \left(\frac{x}{\tau} \right) + \frac{e_1}{\omega_1} f_0(\tau x + 1 - \tau) - \frac{1}{\omega_2} f_0(x) \right) + o(1);$$

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} v_1(x,\lambda) d\lambda = \frac{p_2}{\omega_2 - \omega_1} \left(-\frac{e_2}{\omega_2} f_1\left(\frac{x}{\tau}\right) + \frac{e_1}{\omega_1} f_1(\tau x + 1 - \tau) - \frac{1}{\omega_2} f_1(x) \right) + \frac{p_2 + \omega_2 p_1}{\omega_2 - \omega_1} \left(-\frac{e_2}{\omega_2^2} f_0'\left(\frac{x}{\tau}\right) + \frac{e_1}{\omega_1^2} f_0'(\tau x + 1 - \tau) - \frac{1}{\omega_2^2} f_0'(x) \right) + o(1).$$

• В разделе 1.4 выводятся условия на функции f_0 , f_1 , обеспечивающие выполнение асимптотических равенств

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} v_0(x,\lambda) = f_0(x) + o(1), \quad \nu \to \infty,$$
$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} v_1(x,\lambda) = f_1(x) + o(1), \quad \nu \to \infty,$$

которые служат необходимыми и достаточными условиями в теореме о разложимости по корневым функциям. Сравнение с формулами из Теоремы 8 позволяет получить отсюда условия на функции f_0 , f_1 в виде функционально-дифференциальных уравнений.

Утверждение 9. Асимптотические равенства выполняются в том и только том случае, если функции $f_0(x)$, $f_1(x)$ и $F_1(x) = \int\limits_0^x f_1(t)dt$ удовлетворяют следующим уравнениям, тождественно по $x \in [0,1]$:

$$e_{2}\omega_{2}f_{0}\left(\frac{x}{\tau}\right) - e_{1}\omega_{1}f_{0}(\tau x + 1 - \tau) + \omega_{1}f_{0}(x)$$

$$- p_{2}\left(e_{2}F_{1}\left(\frac{x}{\tau}\right) - e_{1}F_{1}(\tau x + 1 - \tau) + F_{1}(x)\right) = 0,$$

$$- e_{2}\omega_{1}f_{1}\left(\frac{x}{\tau}\right) + e_{1}\omega_{2}f_{1}(\tau x + 1 - \tau) - \omega_{2}f_{1}(x)$$

$$+ e_{2}f'_{0}\left(\frac{x}{\tau}\right) - e_{1}f'_{0}(\tau x + 1 - \tau) + f'_{0}(x) = 0.$$

Полученные условия представляют собой довольно сложную систему функциональнодифференциальных уравнений для функций f_0 , f_1 , но оказывается, что её можно упростить. Ответ приведен в следующей теореме, которая является основным результатом раздела 1.4.

Теорема 10. Пусть имеет место сильно нерегулярный случай

$$a_{12} = a_{1\bar{2}} = 0.$$

Для того, чтобы для функций f_0, f_1 , удовлетворяющих условиям $f_0'', f_1' \in L_p[0,1]$, p>1, и

$$f_0(0) = f_0(1) = f'_0(0) = f'_0(1) = f_1(0) = f_1(1) = 0$$

выполнялось свойство разложимости по корневым функциям этой краевой задачи, необходимо и достаточно, чтобы функции $f_0(x)$, $f_1(x)$ удовлетворяли следующим уравнениям, тождественно по $x \in [0,1]$:

$$e_1(f_0'(x) - \omega_2 f_1(x)) = 0,$$

$$e_2(f_0'(\frac{x}{\tau}) - \omega_1 f_1(\frac{x}{\tau})) + f_0'(x) - \omega_2 f_1(x) = 0.$$

Также, можно выделить несколько частных случаев, которые покрывают все решения рассматриваемой системы. Для каждого из них условия разложимости имеют уже достаточно простой вид.

Утверждение 11. В условиях теоремы 10, для выполнения свойства разложимости по корневым функциям необходимо и достаточно, чтобы выполнялось одно из следующих трёх условий:

1) $npu e_2 = 0$:

$$f_0'(x) - \omega_2 f_1(x), \quad x \in [0, 1];$$

2) npu $e_2 \neq 0$, $e_1 \neq 0$:

$$f_0'(x) - \omega_2 f_1(x), \quad x \in [0, 1], \qquad f_1(x) = 0, \quad x \in [0, 1/\tau];$$

3) npu $e_2 \neq 0$, $e_1 = 0$:

$$e_2\left(f_0'\left(\frac{x}{\tau}\right) - \omega_1 f_1\left(\frac{x}{\tau}\right)\right) + f_0'(x) - \omega_2 f_1(x) = 0, \ x \in [0, 1].$$

Во второй главе рассматривается разложение по корневым функциям квадратичного пучка в случае 2-кратных характеристик, для краевой задачи вида

$$\ell(y,\lambda) := y'' - 2\lambda y' + \lambda^2 y = 0, y = y(x), x \in [0,1],$$

 $U_1(y,\lambda) := y(0) = 0, U_2(y,\lambda) := y'(1) - \lambda y'(0) = 0.$

Как и в первой главе, требуется выяснить, при каких условиях имеет место разложимость в 2-кратный ряд по корневым функциям пучка.

В данном случае характеристическое уравнение для оператора ℓ

$$\omega^2 - 2\omega + 1 = 0$$

имеет один двукратный корень $\omega_1=1,$ а характеристический определитель равен

$$\Delta(\lambda) = \begin{vmatrix} U_1(y_1) & U_1(y_2) \\ U_2(y_1) & U_2(y_2) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ \lambda e^{\lambda} - \lambda^2 & (1+\lambda)e^{\lambda} - \lambda \end{vmatrix} = (1+\lambda)e^{\lambda} - \lambda.$$

Его нули, определяющие собственные значения задачи, находятся из уравнения

$$e^{\lambda} = 1 - \frac{1}{1+\lambda},$$

откуда нетрудно получить асимптотическую формулу

$$\lambda_k = 2k\pi i + O\left(\frac{1}{k}\right), \quad k = \pm 1, \pm 2, \dots$$

• В разделе 2.1 рассматриваемая задача переписывается в эквивалентном матричном виде, линейном по λ , используя производные цепочки (подход М.В. Келдыша и др. [6, 11, 17, 24]):

$$y_1 = y$$
, $y_2 = \lambda y_1$.

В этих переменных задача записывается в виде

$$\begin{cases} y_2 - \lambda y_1 = 0, \\ -y_1'' + 2y_2' - \lambda y_2 = 0, \end{cases}$$
$$y_1(0) = 0, \quad y_1'(0) - y_2'(0) = 0$$

или, кратко, в виде

$$D(Y) = \lambda Y,$$

$$U_1(Y) := y_1(0) = 0, \quad U_2(Y) := y_1'(0) - y_2'(0) = 0,$$

где обозначено

$$D(Y) := \begin{pmatrix} 0 & 1 \\ -D_x^2 & 2D_x \end{pmatrix} Y, \quad D_x = \frac{d}{dx}, \quad Y := \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

• В разделе 2.2 строится резольвента $\hat{R}_{\lambda}=(\hat{L}-\lambda E)^{-1}$, где \hat{L} оператор, порождённый дифференциальным оператором D(Y) и краевыми условиями. Это эквивалентно решению неоднородной краевой задачи относительно вектор-функции Y

$$y_2 - \lambda y_1 = f_1,$$

-y''_1 + 2y'_2 - \lambda y_2 = f_2,
$$U_i(Y) = 0, \quad i = 1, 2,$$

которую можно переписать и в эквивалентном скалярном виде.

Утверждение 12. Компонента $y = y_1$ удовлетворяет краевой задаче

$$y'' - 2\lambda y' + \lambda^2 y = f(x,\lambda), \quad f(x,\lambda) := -\lambda f_1 + 2f_1' - f_2,$$

$$U_1(y,\lambda) = y(0) = 0, \quad U_2(y,\lambda) = y'(1) - \lambda y'(0) = f_1'(0).$$

В дальнейшем принимаются следующие предположения относительно функций f_1, f_2 :

$$f_1, f'_1, f''_1, f'''_1, f_2, f'_2, f''_2, f''_2 \in L_1[0, 1];$$

 $f_1(0) = f_1(1) = f'_1(0) = f'_1(1) = f''_1(0) = f''_1(1)$
 $= f_2(0) = f_2(1) = f'_2(0) = f'_2(1) = 0.$

Утверждение 13. Общее решение уравнения для у имеет вид

$$y(x,\lambda) = C_1 e^{\lambda x} + C_2 x e^{\lambda x} + \int_0^x (x-t)e^{\lambda(x-t)} f(t,\lambda)dt.$$

Используя метод вариации произвольных постоянных, получаем следующее представление.

Теорема 14. Решение краевой задачи для у имеет вид

$$y(x,\lambda) = \int_{0}^{x} (x-t)e^{\lambda(x-t)}f(t,\lambda)dt - \frac{1}{\Delta(\lambda)} \int_{0}^{1} e^{\lambda(x+1-t)}x(1+\lambda(1-t))f(t,\lambda)dt.$$

• В разделе 2.3 доказываются асимптотические формулы для интегралов от $y=y_1$ и y_2 по системе расширяющихся контуров, в качестве которых мы примем окружности Γ_{ν} радиусов $\nu + \frac{1}{2}\pi$ (см. асимптотику собственных значений). Как и в разделе 1.3, эти оценки используются далее в доказательстве теоремы о разложимости по корневым функциям.

Для доказательства следующих Утверждений используется разбиение контура на части Γ_{ν}^{-} и Γ_{ν}^{+} , лежащие, соответственно, в левой и правой полуплоскостях.

Утверждение 15. При сделанных предположениях относительно функций f_1 , f_2 имеет место следующая асимптотика:

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} y(x,\lambda) d\lambda = x(f_1'(x) - f_2(x))$$
$$-x \int_{0}^{x} e^{t-x} (tf_1''(t) - f_2(t) - tf_2'(t)) dt + o(1), \quad \nu \to \infty.$$

Утверждение 16. При сделанных предположениях относительно функций f_1, f_2 имеет место асимптотика

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} y_2(x,\lambda) d\lambda = f_2(x) + (x-1)(f_2(x) + xf_2'(x) - xf_1''(x))$$
$$-x \int_{0}^{x} e^{t-x} (f_2(t) + tf_2'(t) - tf_1''(t)) dt + o(1), \quad \nu \to \infty.$$

• В разделе 2.4 выводятся условия на функции f_0, f_1 обеспечивающие свойство разложимости по корневым функциям. Это свойство эквивалентно выполнению асимптотических формул при $\nu \to \infty$,

$$-\frac{1}{2\pi i} \int_{\Gamma_{0}} y_{1}(x,\lambda) = f_{1}(x) + o(1), \quad -\frac{1}{2\pi i} \int_{\Gamma_{0}} y_{2}(x,\lambda) = f_{2}(x) + o(1),$$

которые теперь только остаётся сравнить с формулами, полученными в Утверждениях 15, 16.

Теорема 17. Пусть функции f_1 , f_2 удовлетворяют сделанным предположениям. Для того, чтобы для них имела место разложимость в 2-кратный ряд по корневым функциям рассматриваемой краевой задачи, необходимо и достаточно, чтобы выполнялось соотношение

$$f_1(x) - xf_1'(x) + xf_2(x) = 0.$$

Замечательным обстоятельством является то, что полученное условие совпадает с условием разложимости, полученным в работе [24] для того же квадратичного пучка, но с другим граничным условием (y'(1)-y'(0)=0) вместо условия $y'(1)-\lambda y'(0)=0$).

Заключение

В бакалаврской работе рассмотрены два примера краевых задач для пучка дифференциальных операторов, квадратичного по спектральному параметру λ , и с граничными условиями, линейными по λ . Одна краевая задача отвечает случаю простых корней характеристического уравнения, вторая — случаю кратных корней.

Оба эти примера относятся к сильно нерегулярному случаю, в терминологии Наймарка, для которого получение теоремы о разложимости по корневым функциям пучка является нетривиальной задачей.

При некоторых дополнительных предположениях в Теоремах 10 и 17 получены необходимые и достаточные условия на вектор-функцию f, при выполнении которых для нее имеет место двукратная разложимость в ряд Фурье по корневым элементам пучка. Эти условия имеют вид дифференциального уравнения для компонент вектор-функции f. Перечислены также частные случаи, для которых условия разложимости принимают более простой вид.