Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической физики и вычислительной математики

Обратная задача рассеяния для систем дифференциальных уравнений с особенностью

(название темы выпускной квалификационной работы полужирным шрифтом)

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса 411 группы

направления 01.03.02 — Прикладная математика и информатика

(код и наименование направления

механико — математического факультета

наименование факультета

Кирьяновой Татьяны Александровны
фамилия, имя, отчество

Научный руководитель

к.фм.н., доцент		М. Ю. Игнатьев
должность, уч. степень, уч.звание	дата, подпись	инициалы, фамилия
Зав. кафедрой		
д.фм.н., профессор		В. А. Юрко
должность, уч. степень, уч.звание	дата, подпись	инициалы, фамилия

Введение

Дифференциальные уравнения с коэффициентами с неинтегрируемой особенностью на конце или внутри интервала часто изучаются в естественных и технических науках.

В данной рассматривается система дифференциальных уравнений

$$y' - x^{-1}Ay - q(x)y = \rho By, \ x > 0, \tag{1}$$

где A, B - постоянные матрицы размерностью $n \times n, q(x), x \in (0, \infty)$, выполняется построение различных фундаментальных систем решений для (1), которые называются решениями Вейля. Решения Вейля играют важную роль при изучении прямых и обратных спектральных задач.

На протяжении всей работы предполагается следующее:

Предположение 1 $B = diag(b_1, \cdots, b_n), n > 2$ A u q(x) - недиагональные, $q(\cdot) \in W_1^1[0, \infty)$. Собственные значения $\{\mu_j\}_{j=1}^n$ матрицы A различны u такие, что $\mu_j - \mu_k \notin \mathbb{Z}$ для $j \neq k$, кроме того Re $\mu_1 < \cdots < Re$ μ_m . Элементы b_1, \cdots, b_n матрицы B - комплексные числа отличные от нуля такие, что $\sum_{j=1}^b b_j = 0$.

Полученные результаты могут использоваться в различных областях спектральной теории.

Работа состоит из введения, трех разделов, заключения и списков используемых источников.

В введении содержатся общие сведения о работе: актуальность, цель, описывается основная задача, даны вспомогательные термины и основные определения.

В первом разделе вводятся необходимые сведения для дальнейшей работы, приводится построение тензоров, а также построение оператора Грина для негомогенного уравнения

$$Y' = Q_0^{(0)}(x, \rho)Y + F, \ Q_0(x, \rho) = x^{-1}A + \rho.$$

Также приводятся оценки и асимптотическое поведение решений уравне-

ний Вольтерры вида:

$$Y(x) = T_k^0(x, \rho) + \int_0^x G_{n-k+1}(x, l, \rho)(q^{n-k+1})(t)Y(t)dt,$$

$$Y(x) = F_k^0(x \, \rho) - \int_{x}^{\infty} G_k(x, t, \rho)(q^{(k)}(t)Y(t))dt,$$

Во втором разделе показывается следующее: фундаментальные тензоры, построенные в первом разделе, могут быть представлены в виде векторного произведения решений Вейля. Для решений Вейдя доказываются асимтотики.

В третьем разделе показывается единственность решения обратной задачи рассеяния для системы (1)

Основное содержание работы

В первом разделе рассматриваются следующие вспомогательные уравнения:

$$Y' = Q^{(m)}(x, \rho)Y, \tag{2}$$

где Y - это функция со значениями во внешнем произведении $\wedge^m \mathbb{C}^n$. Здесь и далее

$$Q(x,\rho) := x^{-1}A + \rho B + q(x)$$

и для матрицы M размерности $n \times n$ оператор $M^{(m)}$, действующий в $\bigwedge^m \mathbb{C}^m$, определен таким образом, что для векторов u_1, \ldots, u_m выполняются следующие тождества

$$M^{(m)}(u_1 \wedge u_2 \wedge u_m) = \sum_{i=1}^m u_1 \wedge u_2 \wedge \ldots \wedge u_m.$$

В дальнейшем также будем использовать эти обозначения.

Обозначим через через \mathcal{A}_m множество всех мультииндексов $\alpha = (\alpha_1, \ldots, \alpha_m), \alpha_1 < \alpha_2 < \ldots < a_m, a_j \in \{1, 2, \ldots, n\}$. Для набора векторов u_1, \ldots, u_n из $\mathbb C$ и мультииндекса $\alpha \in \mathcal{A}_m$ определим

$$u_{\alpha} := u_{\alpha_1} \wedge \ldots \wedge u_{\alpha_m}.$$

Пусть a_1,\ldots,a_n -числовая последовательность. Для $\alpha\in\mathcal{A}_m$ определим

$$a_{\alpha} := \sum_{j \in \alpha} a_j.$$

Для $k \in \overline{1,n}$ обозначим

$$\overrightarrow{a}_k := \sum_{j=1}^k a_j, \overleftarrow{a} = \sum_{j=k}^n a_j.$$

Для мультииндекса α символ α' означает упорядоченное дополнение мультииндекса α до $(1,2,\ldots,n)$. Отметим, что предположение 1, в частности, подразумевает, что $\sum_{k=1}^{n} \mu_k = \sum_{k=1}^{n} R_k = 0$, и поэтому для мультииндекса α выполняется $R_{\alpha'} = -R_{\alpha}$ и $\mu_{\alpha'} = -\mu_{\alpha}$.

Далее предполагаем, что $\rho \in \overline{S}_{\nu}$ для некоторого произвольного фиксированного ν . Рассматриваем уравнение Вольтерры следующего вида:

$$Y(x) = T_k^0(x, \rho) + \int_0^x G_{n-k+1}(x, l, \rho)(q^{n-k+1})(t)Y(t)dt.$$
 (3)

$$Y(x) = F_k^0(x \, \rho) - \int_x^\infty G_k(x, t, \rho)(q^{(k)}(t)Y(t))dt, \tag{4}$$

где

$$T_k^0(x,\rho) := C_k(x,\rho) \wedge \dots \wedge C_n(x,\rho),$$

$$F_k^0(x,\rho) := E_1(x,\rho) \wedge \dots E_k(x,\rho) = \Psi_1^0(x,\rho) \wedge \dots \wedge \Psi_k^0(x,\rho)$$

и $G_m(x,t,
ho)$ - оператор, действующий в $\bigwedge^m \mathbb{C}^n$:

$$G_m(x,t,\rho)f = \sum_{\alpha \in \mathcal{A}_{n-k+1}} (-1)^{\sigma_{\alpha}} |f \wedge \Psi_{\alpha'}^0(t,\rho)| \Psi_{\alpha}^0(x,\rho) =$$

$$\sum_{\alpha \in \mathcal{A}_{n-k+1}} (-1)^{\sigma_{\alpha}} |f \wedge E_{\alpha'}(t,\rho)| E_{\alpha}(x,\rho)$$

Здесь $\sigma_{\alpha} \in \{0,1\}$ такое, что $(-1)^{\sigma_{\alpha}} = |f_{\alpha} \wedge f_{\alpha'}|$.

Через C обозначим различные константы, которые не зависят от x и ρ .

Теорема 1 Для любого $\rho \in \overline{S}_{\nu} \setminus \{0\}$ уравнения (3) и (4) имеют единственные решения $T_k(x,\rho)$ и $F_k(x,\rho)$ соответственно такие, что

$$||T_k(x,\rho)|| \le C \begin{cases} |(px)^{\overleftarrow{\mu_{\alpha}}}, & |\rho x| \le 1\\ |\exp(\rho x \overleftarrow{R}_{\alpha})|, & |\rho x| > 1 \end{cases}$$

$$||F_k(x,\rho)|| \le C \begin{cases} |(px)^{\overrightarrow{\mu_{\alpha}}}|, & |\rho x| \le 1\\ |\exp(\rho x \overrightarrow{R}_{\alpha})|, & |\rho x| > 1 \end{cases}$$

Имеют место следующие асимптотики

$$F_k(x,\rho) = \exp(\rho x \overrightarrow{R}_{\alpha})(\mathfrak{f}_1, \wedge \ldots \wedge f_k + o(1)), x \to \infty,$$
$$T_k(x,\rho) = (px)^{\overleftarrow{\mu_{\alpha}}}(\mathfrak{\eta}_k \wedge \ldots \wedge \mathfrak{\eta}_n + o(1)), x \to \infty.$$

Далее мы рассмотрим асимптотическое поведение фундаментальных тензоров $T_k(x,\rho), F_k(x,\rho)$ для $\rho \to \infty$ и $\rho \to 0$.

Лемма 1 Пусть $T \in (0, \infty)$ произвольное и фиксированное. Тогда для функции

$$H_0(x,\rho): \int_0^{|\rho|^{-1}} G_{n-l+1}(x,t,\rho)(q^{n-k+1}(t)T_k(x,\rho))dt$$

верная следующая оценка

$$||H_0(x,\rho)|| \le C|\rho|^{-1} \exp(\rho x \overleftarrow{R}_k)|$$

для $|\rho| > T^{-1}$ равномерна по $x \in [|\rho|^{-1}, T]$, где константа C зависит только T.

Лемма 2 Пусть $T \in (0, \infty)$ произвольное и фиксированное. Тогда:

1. для любым двух мультииндексов $\alpha, \beta \in \alpha \in \mathcal{A}_{n-k+1}$ функция

$$H^0_{\alpha\beta}(x,\rho) = \int_{|\rho|^{-1}}^x \left| \left(q^{(n-k+1)}(t) \right) E_{\beta'}(t,\rho) \right| E_{\beta}(x,\rho) dt$$

допускает оценку

$$||H^0_{\alpha\beta}(x,\rho)|| \le C ||\rho^{-\varepsilon} \exp(\rho x \overrightarrow{R}_k)||$$

для $|\rho| > T^{-1}$ однородного по $x \in [|\rho^{-1}, T]$, где $\varepsilon \in (0, 1)$ - произвольное, а константа C зависит только от ε и T.

2. для любого мультииндекса $\beta \in \mathcal{A}_k$ функция

$$H_{\beta}^{\infty}(x,\rho) = \int_{|\rho|^{-1}}^{x} \left| (q^{(k)}(t)F_{k}^{0}(t,\rho) \wedge E_{\beta'}(t,\rho)) \right| |E_{\beta}(x,\rho)dt$$

допускает оценку

$$||H_{\beta}^{\infty}(x,\rho)|| \le C ||\rho^{-1} \exp(\rho x \overrightarrow{R}_k)||$$

для любых $|\rho| > T^{-1}$ равномерных по $x \in [T, \infty)$, константа C зависит только от T.

Лемма 3 Пусть $T \in (0, \infty)$ произвольное и фиксированное. Тогда верны следующие оценки:

- 1. $||T_k(x,\rho) T_k^0(x,\rho)|| \le C \left| \rho^{-\varepsilon} \exp(\rho x \overline{R}_k) \right|$ для $|\rho| > T^{-1}$ равномерных по $x \in [|\rho|^{-1}, T]$, где $\varepsilon \in (0,1)$ произвольная константа C зависит только от ε и T;
- 2. $|F_k(x,\rho) F_k^0(x,\rho)| < C \left| \rho^{-1} \exp(\rho x \overrightarrow{R}_k) \right|$ для $|\rho| > T^{-1}$ равномерных по $x \in [|\rho|^{-1}, T]$ и константа C зависит только T.

Следствие 1 Для любого фиксированного $x \in (x, \rho)$ и $\rho \to \infty, \rho \in \overline{S}_{\nu}$ верно асимптотическое представление:

$$T_k(x,\rho) = T_k^0(x,\rho) + O\left(\rho^{-\varepsilon}\left(\rho x \overleftarrow{R}_k\right)\right), \varepsilon \in (0,1),$$
$$F_k(x,\rho) = F_k^0(x,\rho) + O\left(\rho^{-1}\exp\left(\rho x \overrightarrow{R}_k\right)\right).$$

Лемма 4 Для любого $k = \overline{1, n}\widetilde{F}_k(x, \cdot), \widetilde{T}_k(x, \cdot)$ допускает непрерывное решение по \overline{S}_{μ} .

Во втором разделе дается определение решения Вейля:

Определение 1 Пусть $k \in \overline{1, N}$ и $\rho \in S_{\nu}$ - фиксировано. Функция $y(x), x \in (0, \infty)$ называется к-ым решением Вейля, если оно удовлетворяет системе (1) и верна следующая асимптотика:

$$y(x) = O(x^{\mu_k}), x \to 0, y(x) = \exp(\rho R_k x)(\mathfrak{f}_k + o(1)), x \to \infty.$$

В этом разделе показывается, что фундаментальные тензоры $F_k(x, \rho)$, построенные в предыдущем разделе, фактически могут быть представлены в виде векторного произведения решений Вейля.

Лемма 5 Для любых $\rho \in \overline{S}_{\nu} \setminus \{0\}$ существуют единственные системы абсолютно непрерывных относительно $x \in (0, \infty)$ функций $\{v(x, \rho), \dots, v_n\}, \{\omega_1(x, \rho), \dots, \omega_n(x, \rho)\}$ такие, что:

- $\{v_1,\ldots,v_n\}$ ортогональна и $\{\omega_1(x,\rho),\ldots,\omega_n(x,\rho)\}$ ортогональна;
- $T_k = \omega_k \wedge \ldots \wedge \omega_n, F_k = \upsilon_1 \wedge \ldots \wedge \upsilon_n;$
- верна следующая асимптотика

$$\upsilon_k = \exp(\rho R_k x)(\mathfrak{f}_k + o(1)), x \to \infty, \omega_k = (\rho x)^{\mu_k}(\mathfrak{g}_k + o(1)), x \to \infty,$$
где $\mathfrak{g}_n = \mu_n, \mathfrak{g}_k - \mu_k \in splan\{\mathfrak{g}_k\}_{j>k}$ и вектора $\{\mathfrak{g}_k\}_{k=1}^n$ ортогональны;

• верны следующие отношения имеют вид:

$$(\omega_k' - Q(x, \rho)\omega_k) \wedge T_{k+1} = 0, F_{k-1} \wedge (\upsilon_k' - Q(x, \rho))\upsilon_k) = 0;$$

• $v \wedge F_k = 0, \omega_k \wedge T_s = 0, \ ecnu \ s \leq k.$

Перейдем от $\{v_k\}$ к решению Вейля.

Определим $\Delta_k(\rho) = |F_{k-1}(x,\rho) \wedge T_k(x,\rho)|$. Ясно, что $\Delta_k(\rho)$ и не зависит от xx.

Теорема 2 Для любых $\rho \in \overline{S}_{\mu} \setminus \{0\}$, для которых верно $\Delta_k(\rho) \neq 0$, существует единственная функция $\psi_k(x,\rho)$ такая, что

- $F_{k-1} \wedge \psi_k = F_k, \psi_k \wedge T_k = 0;$
- $\psi_k' = Q(x,\rho)\psi_k$ (т.е. ψ_k -решение системы (1)

• если $\rho \in S_{\mu}$, то верно асимптотическое представление:

$$\psi_k(x,\rho) = \exp(\rho R_k x) - \mathfrak{f}_k + 0(1), x \to \infty, \psi_k(x,\rho) = O((\rho x)^{\mu_k}), x \to 0$$

Лемма 6 Пусть $\rho \in S_{\nu}$ такое, что $\Delta_k(\rho) \neq 0$. Тогда любое решение y(x) уравнения (1), удовлетворяющее условиям

$$y(x) = O((\rho x)^{\nu_k}), \ x \to 0, \ y(x) = \exp(\rho R_k x)(\mathfrak{f}_k + o(1)), x \to \infty,$$

 $coвnadaem\ c\ \psi_k(x,\rho).$

Теорема 3 Для $\rho \to \infty, \rho \in \overline{S}_{\nu}$ функции $\Delta_k(\rho)$ допускает следующие асимптотики:

$$\Delta_k(\rho) = \Delta_k^0 + O(\rho^{-\varepsilon}, \varepsilon \in (0, 1))$$

Для любого фиксированного x и $\rho \to \infty, \rho \in \overline{S}_{\nu}$ имеет место следующие асимптотики:

$$\psi_k(x,\rho) = \sum_{j=1}^k \gamma_{jk}^0 \exp(\rho x R_j) \mathfrak{f}_j + O\left(\rho^{-\varepsilon} \exp(\rho x R_k)\right),$$

где γ_{jk}^0 - константы, $\gamma_{kk}^0=1$ не зависят от $q(\cdot)/.$

Теорема 4 Если для всех $k = \overline{1,n}\Delta_k(0) \neq 0$, то все функции $\rho^{\mu_k}\psi_k(x,\rho)$ будут непрерывными по ρ в расширении $\overline{S}_{\nu} \cap \{|\rho| \leq \delta\}$ для некоторого $\delta > 0$

В третьем разделе рассматривается обратная задача рассеяния для системы (1). Предположим, что выполняется следующее условие:

Условие G_0 . Для любого сектора $S_{\nu}, \mu = \overline{1, N}$ все функции $\Delta_k(\rho), k = \overline{1, n}$ не обращаются в ноль для $\rho \in \overline{S}_{\nu}$.

Для каждого сектора $S_{\nu}, \mu = \overline{1,N}$ рассматриваем фундаментальную матрицу

$$|Psi(x,\rho):=(\psi_1(x,\rho),\ldots,\psi_n(x,\rho)),$$

где $\psi_k(x,\rho)$ - решение Вейля системы (1), построенное в предыдущем разделе. Пусть Σ_{ν} - луч, который разделяет сектора S_{ν} и S_{n+1} (будем считать, что сектора S_1,S_2,\ldots пронумерованы против часовой стрелки и $S_{N+1}:=$

 S_1). При условии G_0 для любого $\rho \in \Sigma_{\nu}$ существуют граничные условия $\Psi_{-}(x,\rho) := \lim_{\xi \to \rho, \xi \in S_{\nu}} \Psi(x,\xi)$ и $\Psi_{+}(x,\rho) := \lim_{\xi \to \rho, \xi \in S_{\nu+1}} \Psi(x,\xi)$. Определим для $\rho \in \Sigma_{\nu}$ матрицу $\vartheta(\rho) := \Psi_{-}^{-1}(x,\rho)\Psi_{+}(x,\rho)$. В качестве данных рассеяния возьмем $\nu(\cdot)$. Далее рассмотрим следующую обратную задачу рассеяния.

ОЗР0. Даны $\vartheta(\rho), \rho \in \Sigma \setminus \{0\}, A, B$ восстанавливают $q(x), x \in (0, \infty)$

В дальнейшем вместе с системой (1) и матрицей коэффициента $q(\cdot)$ рассматриваем систему такого же вида, но с разными (в целом) коэффициента $\widetilde{q}(\cdot)$. Будем полагать: если символ ξ обозначает какой-то элемент, относящийся к системе (1) с коэффициентом $q(\cdot)$, то $\widetilde{\xi}$ аналогично к системе (1) с коэффициентом $\widetilde{q}(\cdot)$.

Основным результатом данного раздела является следующая теорема, которая утверждает, что условия R_0 и G_0 и определение матрицы $\vartheta(\rho), \rho \in \Sigma \setminus \{0\}$ однозначно задают коэффициент $q(\mathbf{x}), x \in (0, \infty)$.

Теорема 5 Пусть матрицы A, B такие, что выполняется условие R_0 . Пусть $q(\cdot)$ и $\widetilde{q}(\cdot)$ такие, что выполняться условие G_0 . Тогда если $\widetilde{\vartheta}(\rho) = \vartheta(\rho)$ для любых $\rho \in \Sigma \setminus \{0\}$ то, верно $\widetilde{q}(x) = q(x)$ почти для всех $x \in (0,\infty)$.

Заключение

В данной бакалаврской работе была показана единственность решения обратной задачи рассеяния для системы (1). Кроме этого, было показано, что фундаментальные тензоры, построенные в первом разделе, могут быть представлены в виде векторного произведения решений Вейля. Кроме того, был построен оператор Грина. Для тензоров были доказаны асимптотики при $x \to 0$ и при $x \to \infty$.