Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра микробиологии и физиологии растений

Микроорганизмы ризосферы

Abelmoschus esculentus

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студента 2 курса 241 группы
Направления 06.04.01 – Биология
Биологического факультета
Альджозари Мустафы Джасим

Научный руководитель	
доцент, кандидат биологических наук	О.Ю. Ксенофонтова
Зав.кафедрой	
доктор биологических наук, профессор	С.А. Степанов

ВВЕДЕНИЕ

Актуальность темы. Микроорганизмы, ассоциированные cрастениями, в последние годы стали объектами активных исследований. К настоящему времени накоплен большой экспериментальный материал, доказывающий значительную роль ризобактерий в жизнедеятельности многих сельскохозяйственных растений [1 - 4]. Активная секреция клетками обеспечивает питательными корня различных веществ субстратами микроорганизмы, образующие с ним прочные ассоциации как внутри корневых тканей, так и на корневой поверхности (ризоплане), а также в почве, непосредственно окружающей корни (ризосфере) [5 - 13]. В связи с этим в ризосфере и ризоплане в значительных количествах концентрируются бактерии, актиномицеты, грибы, водоросли и нематоды, существенно превышая количество этих организмов в обычной почве [13,-15]. В растений образуемом эктосимбиозе корневые экссудаты являются субстратом и факторами роста некоторых групп микробных сообществ, которые выполняют роль антифитопатогенов, утилизаторов нежелательных метаболизма растений, регуляторов общей продуктов концентрации микроорганизмов в почве, регуляторов подвижности и кругооборота минеральных веществ в агроэкосистеме [7, 9, 11]. Это проявляется в улучшении минерального питания растений. В настоящее время изучен микробиоценоз корневой системы у представителей семейств злаковые и бобовые [10, 16, 17], состав ризосферы и ризопланы других растений, имеющих агропромышленное значение остается неизвестным.

В связи с выше изложенным, **целью** данного исследования явилось сравнительная оценка микробных ассоциаций ризосферы и ризопланы *Abelmoschus esculentus*.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Выделить азотфиксирующие, аммонифицирующие, амилолитические, целлюлозоразлагающие бактерии и плесневые грибы из ризосферы и ризопланы *Abelmoschus esculentus*.
- 2. Изучить биологические признаки выделенных микроорганизмов с целью идентификации.
- 3. Провести сравнительную оценку и определить частоту встречаемости микроорганизмов доминирующих популяций, выделенных из ризосферы и ризопланы *Abelmoschus esculentus*.
- 4. Определить антагонистическую активность выделенных штаммов ризосферных бактерий в отношении фитопатогенных грибов.

Положения, выносимые на защиту

- 1. В почве ризосферы Abelmoschus esculentus содержится больше микроорганизмов, чем в ризоплане. Доминирующими видами явиляются штаммы родов Bacillus sp., Brochotrix sp., Erwinia sp., Caryophanon sp., Kurthia sp. и Pseudomonas sp.
- 2. Численность плесневых грибов в ризосфере Abelmoschus esculentus превосходит таковую в ризоплане и представлена родами Penicillium sp., Fusarium sp. и Aspergillus sp.
- 3. Ризосферные штаммы рода *Bacillus* проявляют фунгистатическое действие по отношению к *Aspergillus sp.* и *Fusarium sp.*

Научная новизна

Впервые проведено сравнительное изучение количественного состава микробоценоза ризосферы и ризопланы *Abelmoschus esculentus*. Впервые изучен качественный состав микробного сообщества ризосферы и ризопланы. Получен ризосферный штамм рода *Bacillus*, проявляющий фунгистатическую активность в отношении *Aspergillus sp.* и *Fusarium sp.*

Апробация работы

Материалы данного исследования доложены на X Международной научно-практической конференции «WORLD SCIENCE: PROBLEMS AND INNOVATIONS», состоявшейся 30 мая 2017 г. в г. Пенза.

По данной работе имеется публикация:

Ксенофонтова О.Ю., Альджозари М.Д., Храмова Д.Д. Сравнительная оценка микроорганизмов ризосферы и ризопланы *Abelmoschus esculentus* // Сборник статей победителей X Международной научно-практической конференции "Word science problems and innovations» в 3 ч., 30 мая 2017 г. Издательство: "Наука и Просвещение" (Пенза) С. 39-42.

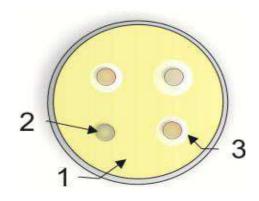
Материал исследований

Объектом исследования явились:

1) Корни однолетнего травянистого растения *Abelmoschus esculentus*, которое относят к овощным культурам (рисунок 1). Родина этого овоща – Африка. В России бамию удается выращивать в теплых регионах, преимущественно в Краснодарском крае. Другие названия этого растения: дамские пальчики, окра, абельмош, гомбо.

Рисунок 1 – Цветки и плоды растения Abelmoschus esculentus

2) Микроорганизмы почвы, выделенные из ризосферы и ризопланы *Abelmoschus esculentus*.


Для выделения микроорганизмов ризосферы и ризопланы использовали метод последовательных отмываний корней по Теппер [79,80]. Из почвенных монолитов с растениями стерильным пинцетом и ножницами отобрали 1,0 г молодых корней (примерно одного диаметра) с приставшими к ним частицами почвы. Корни помещали в колбу со 100,0 мл стерильной водопроводной воды и взбалтывали в течение 2,0 мин. Стерильным крючком или пинцетом корни извлекали из колбы и переносили последовательно во вторую, третью, четвертую, пятую, шестую и седьмую колбы, также содержащие по 100,0 мл стерильной водопроводной воды. В каждой колбе корни отмывали по 2 мин. В последней (седьмой) колбе в воду перед стерилизацией добавляли 5,0-7,0 г песка. Из каждой колбы отдельно стерильной пипеткой брали по капле суспензии и делали посев на поверхность питательной среды на чашки Петри.

Для определения количественного состава аммонификаторов использовали ГРМ-агар, для амилолитических бактерий — крахмало-аммиачный агар, для азотфиксирующих бактерий — среду Эшби, для целлюлозоразлагающих бактерий — среду Гетчинсона, для плесневых грибов — среду Сабуро. Посевы инкубировали при температуре 28°С в течение 48 - 56 ч. [81].

Частоту встречаемости отдельных штаммов рассчитывали как отношение количества проб, содержащих исследуемый штамм, к общему количеству проб с наличием роста [82].

Определение антагонистической активности проводили методом агаровых блоков. Метод агаровых блоков удобен тем, что выращивание штаммов-антагонистов и тест-культур производится на разных питательных средах. Изучаемый на антагонистическую активность микроорганизм засевали на поверхность агаризованной среды в чашке Петри таким образом, чтобы в процессе его роста сформировался «сплошной газон». В нашем

случае - тестовым организмов выступали плесневые грибы. После того, как клетки микроорганизма хорошо вырастали, стерильным пробочным сверлом (или пробиркой) вырезали агаровые блоки, которые переносили на предварительно засеянную тест-культурой поверхность среды в другой чашке Петри. Тест-культуру засевали шпателем, а агаровые блоки накладывали ростом вверх на равном расстоянии один от другого и от краев чашки, плотно прижимали к агаровой пластинке. На одной чашке Петри можно разместить 4 – 5 агаровых блоков с различными продуцентами антибиотических веществ (рисунок 2).

1 – тест культура, 2- агаровый блок, 3 – зона задержки роста тест-культуры

Рисунок 2- Определение антагонистической активности методом агаровых блоков

Чашки инкубировали в термостате при температуре, оптимальной для В тест-культуры. случае чувствительности роста последних К антибактериальному веществу продуцента вокруг агаровых блоков должны образовываться отсутствия роста. Чем больше 30НЫ антибактериального вещества, чем оно активнее и лучше диффундирует в больше диаметр зоны задержки роста тест-культуры. среду, Нечувствительные к антибиотическому веществу данного продуцента клетки растут на всей поверхности среды.

Идентификацию микроорганизмов осуществляли на основе изучения морфологических, тинкториальных, культуральных и биохимических

свойств выделенных микроорганизмов. В процессе идентификации у неферментирующих бактерий определяли подвижность, наличие оксидазы, окисление глюкозы, желатина, мочевины, лизиндекарбоксилазы, лактозы, чувствительность к пенициллину, образованию индола и сероводорода, рост на среде Симмонса. Для идентификации бацилл определяли подвижность, наличие спор, наличие каталазы, маннита, крахмала, мочевины, способность к гемолизу и реакцию Фогес-Проскауэра. Для идентификации пользовались определителями Берджи и Саттона [82,83].

Статистическую обработку полученных данных осуществляли с использованием пакетов прикладных программ «Statistica 8.0 for Windows». Количественные показатели в работе представлены в виде « $M \pm m$ », где «M» – среднеарифметическое значение, а «m» – стандартная ошибка среднего значения. Оценку различий между выборками проводили с использованием t-критерия Стьюдента. Критический уровень значимости был принят $p \le 0.05$.

Результаты исследований и их обсуждение

Выделение микроорганизмов ризосферы и ризопланы Abelmoschus esculentus

Проведенные исследования показали, что в состав микробиоценоза корней абельмоша входили аммонифицирующие, амилолитические, азртфиксирующие бактерии и плесневые грибы (таблица 1). Целлюлозоразрушающие бактерии не были выделены.

В результате проведенных экспериментов нами определен количественный состав микроорганизмов различных физиологических групп в ризосфере и ризоплане *Abelmoschus esculentus* и идентифицированы представители доминантных популяций.

Сравнительное исследование состава микроорганизмов ризосферы и ризопланы показало, что количественные показатели аммонифицирующих и амилолитических бактерий в ризоплане были выше, чем таковые в

ризосфере. В ризосфере преобладали азотфиксирующие бактерии и плесневые грибы. Целлюлозоразлагающие бактерии выделены не были.

Таблица 1 - Численность микроорганизмов ризосферы и ризопланы Abelmoschus esculentus (*P≤0,05)

Физиологическая группа	Численность	Численность
микроорганизмов	микроорганизмов в	микроорганизмов в
	ризосфере, КОЕ/г	ризоплане, КОЕ/г
	(M±m)	(M±m)
Аммонифицирующие	$4,0*\pm0,2\times10^{8}$	6,7*±0,3×10 ⁸
бактерии		
Азотфиксирующие	$3,8\pm0,1\times10^4$	1,8±0,3×10 ⁴
бактерии		
Плесневые грибы	$9,6*\pm0,7\times10^3$	$5,6*\pm0,2\times10^3$
Амилолитические	$2,7\pm0,2\times10^3$	$6,7\pm0,2\times10^3$
бактерии		

Такое повышенное содержание микроорганизмов связано с выделением на поверхности корней аминокислот и углеводов (сахаров, крахмала), которые являются субстратами для данных микроорганизмов. Это еще раз подтверждает известный факт о ризосферном эффекте.

Идентификация доминантных штаммов микроорганизмов позволила определить частоту встречаемости отдельных представителей в ризоплане и ризосфере растения *Abelmoschus esculentus*.

Частота встречаемости отдельных штаммов в ризосфере и ризоплане Abelmoschus esculentus

Для определения качественного состава микроорганизмов ризосферы и ризопланы были выделены доминатные штаммы бактерий и грибов и идентифицированы до рода.

В результате сравнительного изучения микробиоценоза корней установлено, что качественный состав доминантных популяций микроорганизмов ризосферы и ризопланы одинаков, но имеются небольшие различия микробного населения (таблица 2).

Таблица 2 - Частота встречаемости доминирующих видов микроорганизмов в ризосфере и ризоплане *Abelmoschus esculentus*

Виды микроорганизмов	В ризосфере, %	В ризоплане, %
Azotobacter niger	68	56
Clostridium pasteurianum	49	25
Bacillus sp Rs4	72	48
Brochotrix sp.	64	36
Erwinia sp.	59	72
Caryophanon sp.	46	38
Kurthia sp.	40	27
Pseudomonas sp.	57	65
Enterobacter sp.	42	58
Saccharococcus sp.	59	79
Azomonas sp.	47	26
Micrococcus sp.	26	54
Leuconostoc sp.	43	89
Acinetobacter sp.	52	68
Alcaligenes sp.	37	74
Penicillium sp.	35	58
Fusarium sp.	40	35
Aspergillus sp.	50	39
Trichoderma sp.	43	24

Такие микроорганизмы как Azotobacter niger, Clostridium pasteurianum, Bacillus sp.Rs4, Brochotrix sp., Caryophanon sp., Kurthia sp. Azomonas sp. Fusarium sp. и Aspergillus sp. в пробах, полученных из ризосферы встречались чаще, чем в ризоплане. В ризоплане, наоборот чаще встречались грамотрицательные бактерии. В ходе исследования количественного состава микроорганизмов ризосферы было отмечено большое разнообразие плесневых грибов (рисунок 2).

Микрофлора ризосферной почвы растений с одной стороны выполняет важные экологические функции деструктора органических соединений, а с другой — является антагонистом для патогенных организмов, обеспечивая естественный барьер.

Рисунок 2- Фотографии плесневых грибов ризосферы Abelmoschus esculentus, выделенных на среде Сабуро

Анализируя полученные результаты, было отмечено, среди ризосферных микроорганизмов способные встречаются штаммы, рост растений [19,38]. Ассоциативные микроорганизмы, стимулировать выделяющие В процессе роста антибиотические гетерогенные способны низких низкомолекулярные вещества, при концентрациях подавлять активность других микроорганизмов и тем самым влиять на жизнедеятельность растений. Учеными установлено, что в борьбе с

возбудителями болезней растений используют бактерии, обладающие антагонистическим действием по отношению к фитопатогенам [57, 83]. В связи с выше изложенным, нам было интересно посмотреть антагонистическую активность выделенных штаммов по отношению к фитопатогенным грибам.


Определение антагонистической активности методом агаровых блоков

Доказано, что многие ризосферные бактерии, наряду со стимуляцией роста растений, оказывают антагонистичесое действие на фитопатогены [57, 58]. Поэтому на следующем этапе нашей работы нами была изучена антагонистическая активность доминатнтых штаммов бактерий по отношению к фитопатогенным грибам выделенные из ризосферы и ризопланы *Abelmoschus esculentus*.

В качестве тест организмов были выбраны 2 штамма плесневых грибов *Fusarium sp.*, и *Aspergillus sp.* На каждую чашку с тест организмом наносили по 5 блоков с ризосферными бактериями. Степень антагонистической активности бактерий учитывали по величине зоны фунгистатического или фунгицидного действия (рисунок 3).

Исследуя полученные данные, наиболее эффективное антагонистическое действие проявил штамм рода *Bacillus*.

а - тест организм $Aspergillus sp., \delta$ - тест организм Fusarium sp.

Рисунок 3 — Определение антагонистической активности бактерий к плесневым грибам методом агаровых блоков

Таким образом, установлено, что выделенные изоляты бактерий рода *Bacillus* проявляют фунгистатическое действие по отношению к *Aspergillus sp.* и *Fusarium sp.* Данный штамм может быть рекомендован для дополнительного внесения в почву возделывания *Abelmoschus esculentus* как альтернатива химическим средствам защиты растений, к которым наблюдается резистентность фитопатогенов.

ЗАКЛЮЧЕНИЕ

Методом перпендикулярных штрихов определены антагонистические взаимоотношения между штаммами *Amphibacillus xylanus* и *Jonesia denitrificans* 151, которое проявлялось в ингибировании роста жонезий. В связи с этим для создания биопрепарата были отобраны штаммы *Amphibacillus xylanus* 152, A. xylanus 165, Pseudomonas putida П2, P.putida П6.

Сравнительная оценка роста культур на различных питательных средах (МПБ, глюкозо-пептонная среда (среда Голубева) и среда М9 с 1 % глюкозы в качестве источника углерода) определила время выхода культур в стационарную фазу. При росте на среде ГРМ-бульоне у штаммов Pseudomonas и Amphibacillus наибольший титр клеток (10^8) отмечен на 10-12 часу культивирования, на глюкозо-пептонной среде через 12 часов культивирования максимальная численность составила 10^{-7} кл/мл. Рос культур в среде М9 с 1% глюкозы пик максимальной численности отмечен на 24-26 часу культивирования и достигал значений $10^7 - 10^8$ кл/мл.

Таким образом, выход концентрата препарата с численностью клеток в $4,6\pm0,2\times10^9$ в мл составил 60 мл за 24 часа ферментации. Для приготовления рабочего раствора данного биопрепарата из концентрата необходимо разбавлять в 100 раз для получения раствора с рекомендуемой для ремедиации земель концентрацией клеток деструкторов, равной $4,6\pm0,2\times10^7$

в 1 мл. Полученный объем биопрепарата составит 6 л, что достаточно для обработки 60 кг земли.

выводы

- 1. В почве ризосферы и ризопланы Abelmoschus esculentus доминируют аммонифицирующие микроорганизмы, численность которых составила $4,0\pm0,2\times10^8$ КОЕ/г и $6,7\pm0,3\times10^8$ КОЕ/г соответственно. Среди аммонифицирующих бактерий доминируют бактерии родов Bacillus sp., Brochotrix sp., Erwinia sp., Caryophanon sp., Kurthia sp. и Pseudomonas sp.
- 2. Амилолитические бактерии в ризоплане содержатся в большем количестве, чем в ризосфере и представлены родами Saccharococcus, Azomonas, Micrococcus и Leuconostoc.
- 3. Азотфиксирующие микроорганизмы ризосферы *Abelmoschus esculentus* в 2 раза превышают содержание таковых в ризоплане и представлены бактериями родов *Azotobacter, Azomonas* и *Clostridium pasteurianum*.
- 4. Численность плесневых грибов в ризосфере Abelmoschus esculentus составила $5,6\pm0,2\times10^3$ КОЕ/г. Доминирующее положение занимают виды родов Penicillium sp , Fusarium sp. и Aspergillus sp.
- 5. Выделенные изоляты бактерий рода *Bacillus* проявляют фунгистатическое действие по отношению к *Aspergillus sp.* и *Fusarium sp.*