Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физики открытых систем

<u>Исследование поведения плазменной частоты в системе с</u> <u>электронным потоком со сверхкритическим током</u>

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки<u>4</u> курса <u>431</u>группы направления <u>03.03.03 радиофизика</u> <u>факультета нелинейных процессов</u> Гераськиной Евгении Васильевны

Научный руководитель	
доцент КФОС, к.фм.н.	 Куркин С.А.

Заведующий кафедрой профессор, д.ф.-м.н.

Короновский А. А.

Саратов 2016 г.

Введение. Целью работы является исследование влияния параметров системы (тока, внешнего магнитного поля, радиуса пучка) на отношение эффективной плазменной частоты в области виртуального катода (ВК), образующегося межэлектродном пространстве при пропускании В сверхкритического (превышающего предельный) [1,2,3],тока К Эффективная плазменная частота невозмущенной плазменной частоте. определяет процессы, происходящие в системе с ВК.

На формировании виртуального катода основан принцип работы виркаторов – источников мощного СВЧ-излучения. Динамика виртуального катода в электронном потоке характеризуется сложными пространственновременными колебаниями, что часто приводит к генерации широкополосного СВЧ-излучения в виркаторных системах [4-6]. Считается, что одним из достоинств виркаторов является их способность работать без внешнего магнитного поля. Однако исследования показывают, что введение поля может позволить решить проблему контроля динамики ВК. Процессы, происходящие в системах с ВК при изменении управляющих параметров, до сих пор мало изучены. Исследование влияния параметров на динамику ВК может позволить более эффективно использовать приборы, работа которых основана на колебаниях ВК.

В данной работе, во-первых, будут рассмотрены способы диагностики образования виртуального катода в модельной системе. Во-вторых, основной задачей работы является разработка способа определения связи невозмущенной плазменной частоты с эффективной плазменной частотой и исследование поведения их соотношения с изменением управляющих параметров системы.

Исследование динамики ВК позволит более подробно изучить системы с виртуальным катодом, что является важной задачей электроники больших мощностей и классической СВЧ-электроники.

2

Основное содержание работы. В данной работе в качестве модели была использована классическая система для исследования динамики ВК: в замкнутый отрезок цилиндрического волновода длиной L и радиусом R, на входе и выходе которого установлены сеточные электроды, инжектируется моноскоростной пучок электронов со скоростью v_0 , током I и радиусом r. Вдоль оси системы приложено магнитное поле B. Все расчёты были выполнены с помощью программы двумерного моделирования слаборелятивистских электронных потоков с учетом пространственного заряда во внешнем магнитном поле [7].

В исследуемой модели формирование виртуального катода происходит за счёт образования потенциального барьера. Когда ток недостаточно велик (меньше критического значения), высота потенциального барьера мала - и электроны беспрепятственно пролетают к выходной плоскости. При увеличении И плотность пространственного заряда, тока. растёт соответственно, увеличивается потенциальный барьер. Когда же энергия инжектируемых электронов становится равной высоте потенциального барьера (при критическом значении тока) - начинается отражение, формируется виртуальный При токах пучка, катод. превышающих критическое значение, энергия электронов гораздо меньше потенциального барьера – электроны останавливаются перед ВК и разворачиваются, что приводит к смещению виртуального катода и максимума плотности пространственного заряда в сторону плоскости инжекции.

Очевидно, что с ростом энергии (который в данной модели обеспечивается увеличением релятивистского фактора β) инжектируемых электронов должен увеличиваться и ток для образования ВК: чем больше энергия электронов

 $(E = \frac{mv^2}{2}, v = \beta c)$, тем больший потенциальный барьер они могут преодолеть. Можно сказать, что виртуальный катод начинает двигаться к плоскости инжекции, на самом деле он расширяется, так как практически все электроны оказываются захваченными ВК, следовательно, растет плотность

пространственного заряда. По мере приближения к плоскости инжекции высота барьера будет увеличиваться до тех пор, пока не достигнет некоторого критического значения, и в некоторый момент времени произойдёт «сброс заряда», плотность пространственного заряда будет спадать, потенциальный барьер начнет уменьшаться, ВК будет двигаться к выходной плоскости. Электроны теперь легко преодолевают потенциальный барьер, «не замечая» его. ВК продолжает смещаться к выходной плоскости промежутка до тех пор, пока не восстановится барьер достаточной высоты. Далее процесс повторяется. Ток отраженных от ВК и пролетных электронов оказывается промодулированным на частоте колебаний ВК. Таким образом, эффективная плазменная частота зависит от невозмущенной плазменной частоты.

Образование виртуального катода диагностировалось несколькими способами: с помощью конфигурационных портретов в координатах (r, z), колебаний электрического поля во времени и фазового портрета.

Основной задачей являлось нахождение отношения эффективной плазменной частоты к невозмущенной частоте, для чего был предложен следующий способ. Для того, чтобы найти распределение концентрации в пространстве дрейфа, межэлектродный промежуток разбивался с шагом h на L/h интервалов соответственно (рис. 1).

Рис.1. Конфигурационный портрет электронного потока в координатах (z, r).

После чего производилась оценка эффективной плазменной частоты *w*_n из следующих соображений:

$$w_{p} = \sqrt{\frac{4\pi n_{0}e^{2}}{m_{e}^{2}}}$$
 (1),

где w_p - невозмущенная плазменная частота, n_0 – концентрации электронов в области инжекции, e – заряд электрона, m_e – масса электрона, или $w_p = v_0 \sqrt{\frac{\rho_0}{2\varphi_0 \varepsilon_0}}$, где $v_0 = \beta c$, $\rho_0 = \frac{2\alpha^2 \varphi_0 \varepsilon_0}{L^2}$ – плотность заряда, φ_0 –

потенциал, ε_0 – диэлектрическая проницаемость. И тогда $w_p = \frac{\beta c \alpha}{L}$ (2). Как видно из формулы (1), $w_p \sim \sqrt{n}$. Таким образом, оценить плазменную

частоту можно, зная распределение концентрации.

Получая распределение, представленное на рис.2 определяем максимальную концентрацию (область ВК) и концентрацию в области инжекции. Известно, что частота ВК через невозмущенную плазменную частоту выражается следующим образом: $w_p^3 = w_p \sqrt{\frac{n_1}{n_0}}$, где n_1 – концентрация электронов в области ВК. n_0 в данном случае будет равна 0.0029, а $n_1 = 0.0207$, тогда $k = \sqrt{\frac{n_1}{n_0}} = \frac{w_p^3}{w_p} = 2.67$. Зная, что $w_p = \frac{\beta c \alpha}{L}$ и $\alpha = 8$, w_p = 4.8·10⁹ Гц. Получаем $w_p^3 = 12.816 \cdot 10^9$ Гц.

Рис.2. Зависимость n – числа частиц, отнесенного к общему числу электронов, от координаты z. При *B*=25, *α*=8, шаг разбиения *h*=0.001.

Используя способ оценки, предложенный выше, можно определить, как влияют параметры системы на отношение частот.

С помощью численного моделирования были построены зависимости k от тока и магнитного поля (рис.3). Как видно из графиков, k изменяется в пределах от 1.2 до 1.9.

Рис.3. а) Зависимость k от тока, кривая 1 – при B=20, кривая 2 – при B=5, б) зависимость k от магнитного поля при 1 – $\alpha=30$, 2 – $\alpha=40$.

На рис.3, а виден спад величины k с ростом тока, что объясняется преобладанием дефокусирующих сил, которые «расталкивают» пучок. Чем больше ток – тем больше сила расталкивания, что и приводит к спаду k.

Из формулы (2) видно, что $w_p \sim \alpha$, тогда увеличение тока приводит к увеличению частоты, но в то же время $k = \frac{w_p^3}{w_p}$ спадает. Чтобы понять, как меняется w_3^p с ростом тока, был построен график зависимости w_p^3 от α (рис. 4). Как видно, с ростом параметра тока эффективная плазменная частота

увеличивается. Зная, что невозмущенная плазменная частота w_p растёт линейно с увеличением α , можно сделать вывод, что рост w_p происходит быстрее, чем w_p^9 .

Рис. 3, б демонстрирует зависимость отношения частот от магнитного поля. С увеличением магнитного поля действие дефокусирующих сил становится меньше. Пучок быстрее фокусируется и образование ВК происходит быстрее.

На рис. 5 отражена зависимость эффективной плазменной частоты от магнитного поля: при малых полях w_p^3 растёт, но когда величина магнитного поля становится достаточной, w_p^3 практически перестаёт меняться (т.н. область насыщения).

Рис.4. Зависимость эффективной плазменной частоты w_p^3 от параметра тока *α*, кривая 1 – *B*=20, кривая 2 – *B*=5, кривая 3 – зависимость невозмущенной плазменной частоты w_p от параметра тока.

Рис. 5. Зависимость эффективной плазменной частоты w_p^9 от *B*, α =40.

Заключение. В данной работе в рамках численного моделирования с помощью двумерной математической модели было исследовано влияние тока и магнитного поля на отношение эффективной плазменной частоты к невозмущенной плазменной частоте. Были описаны способы диагностики появления виртуального катода в системе. Также был предложен способ оценки эффективной плазменной частоты. Определен критический ток пучка, при котором в системе образуется ВК и его зависимость от внешнего магнитного поля. Исследовано, как изменяя параметры системы, можно эффективную плазменную повлиять на частоту. Была найдена И проанализирована связь эффективной плазменной частоты с невозмущенной плазменной частотой, а также её эволюция при изменении управляющих параметров. В частности, было обнаружено, что с ростом тока пучка отношение эффективной плазменной частоты к невозмущенной монотонно уменьшается и насыщается, а с ростом магнитного поля – увеличивается и насыщается.

Список литературы

- Дубинов А.Е., Селемир В.Д. // Радиотехника и электроника. 2002. Т. 47. Вып. 6. С. 575.
- 2. Кузелев М.В., Рухадзе А.А. Электродинамика плотных электронных пучков в плазме. М.: Наука, 1990.
- Куркин С. А., Короновский А. А., Храмов А. Е. // Физика плазмы.
 2009. Т.35. Вып.8. С.684.
- 4. Селемир В.Д., Алёхин Б.В., Ватрунин В.Е. и др. //Физика плазмы. 1994. Т. 20. С. 689.
- Анфиногентов В.Г., Храмов А.Е. // Изв. вузов. Радиофизика. 1998. Т. XLI. С. 1137.
- 6. Короновский А.А., Храмов А.Е. // Физика плазмы. 2002. Т. 28. С. 722.
- 7. Куркин С.А., Храмов А.Е., Короновский А.А //. Программа двумерного моделирования слаборелятивистских электронных потоков с учетом пространственного заряда во внешнем магнитном поле. Свидетельство о государственной регистрации программы для ЭВМ No 2009611873, 2009 // Правообладатель: ФГБОУ ВПО СГУ имени Чернышевского Н.Г.