Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра радиофизики и нелинейной динамики

Динамика колебаний в нелинейной цепочке с потенциалом Морзе под внешним гармоническим воздействием

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента(ки) 4 курса 421 группы направления 03.03.03 «Радиофизика» физического факультета

Очкур Ивана Владимировича

Научный руководитель	
профессор д.фм.н., профессор	 А.П. Четвериков

Зав. кафедрой д.ф.-м.н., профессор

_____ В.С. Анищенко

СОДЕРЖАНИЕ

Введение 3
Глава 1. Колебания в одномерной цепочке взаимодействующих частиц 5
1.1 Цепочка частиц с линейными связями и ее дисперсионная характеристика
 1.2 Модель цепочки частиц, связанных нелинейными потенциальными силами Морзе 8
1.3 Дискретные бризеры 10
Глава 2. Моделирование динамики Морзе-цепочки, возбуждаемой внешней гармонической силой 14
2.1 Алгоритм и процедура численного моделирования 14
2.2 Динамика цепочки при различной частоте внешнего воздействия 14
2.3 Динамика цепочки при различной амплитуде внешнего воздействия 21
2.4 Динамика цепочки при различной длительности внешнего воздействия 26
Заключение
Список использованных источников 32

Введение

В последнее время активно исследуются локализованные колебательные и волновые возбуждения в цепочках и решетках частиц, осциллирующих и неосциллирующих, связанных нелинейными потенциальными силами – солитоны, кинки, дискретные бризеры.

Дискретные бризеры привлекают особое внимание в связи с их ролью в различных реальных дискретных структурах – от органических молекул до атомных и молекулярных решеток. Дискретные бризеры(ДБ) представляют собой локализованные не распространяющиеся И В пространстве колебательные возбуждения в консервативных решеточных системах [1,2,3]. В теории рассматриваются ДБ как с бесконечным временем жизни в виде решений соответствующих уравнений, описывающих динамику моделей решетки или цепочки (решение всегда периодично во времени [4], а соответствующее семейство траекторий имеет нулевую вероятностную меру), так и с конечным временем жизни(решения имеют ненулевую вероятностную меру и могут быть реализованы в физических системах или численном эксперименте).

Первой работой о дискретных бризерах, принято считать статью Сиверса и Такено, опубликованную в 1988 году [5]. Существование дискретных бризеров периодических как BO времени решений, локализованных в дискретном пространстве, было доказано в 1994 году, для бесконечных цепочек локально диффузионно связанных нелинейных осцилляторов. С начала 1990-х годов началось активное исследование бризеров посредством разнообразных дискретных физических И математических методов [6,7,8,9]. Было проведено большое количество вычислительных экспериментов, что дало возможность раскрыть целый ряд важных свойств этих динамических объектов, достоверность которых была подтверждена в реальных физических экспериментов.

Количество физических систем, в которых обнаруживаются дискретные бризеры постоянно растёт, что свидетельствует об актуальности этой области направления исследований.

Традиционно дискретные бризеры в одномерной системе понимаются как локализованные на нескольких сайтах периодические колебания в цепочке осциллирующих частиц с частотой, лежащей вне спектра линейных мод (фононов). Смещение граничной частоты полосы пропускания обычно связывают с неизохронностью частиц-осцилляторов (т.е. частиц, которые в отсутствие связи с другими частицами колеблются около положения равновесия). Однако даже если частицы не являются осцилляторами, то можно предполагать, что смещение граничной частоты может возникать и за счет нелинейности сил связи. Однако известны только ограниченные исследования подобных систем с очень простыми потенциалами. В настоящей работе предпринята попытка изучить эволюцию возмущений в цепочке неосциллирующих частиц, связанных потенциальными силами Морзе. Такой потенциал выбран потому, что он, с одной стороны, качественно подобен реалистическому потенциалу Леннарда-Джонса, а с другой подобен потенциалу Тоды. который позволяет получать аналитические решения для многочисленных задач, касающихся нелинейных цепочек. Целью работы является изучение методами компьютерного моделирования динамики Морзе-цепочки при варьировании параметров внешнего гармонического воздействия – частоты, амплитуды, длительности, а также числа возмущаемых частиц – в широком диапазоне, для определения характера устанавливающихся мод, а также особенностей переходных процессов.

Содержание работы

Первая глава имеет три раздела.

Первый раздел посвящён описанию линейной цепочки осцилляторов,

Рис. 1. Одномерная цепочка связанных частиц.

выводу волнового уравнения для нашей цепочки, а так же закона дисперсии для упругих колебаний одномерной цепочки:

$$\omega = \sqrt{\frac{4\gamma}{M}} \sin\left|\frac{ka}{2}\right|$$

Частоты колебаний соответствующие (1.7), приведены на рис. 2.

Рис. 2. Закон дисперсии одномерной цепочки из одинаковых равноудалённых частиц: сплошные кривые – основной интервал изменения волнового числа *k*; штриховые – их периодическое продолжение

Во втором разделе рассмотрели цепочку частиц, связанных нелинейными потенциальными силами Морзе:

$$U(r) = V_0 \left(e^{-2b(r-a)} - 2e^{-b(r-a)} \right)$$

Рис. 3 Потенциалы Леннарда-Джонса, Тоды и Морзе(здесь *U* нормировано на *V*₀, *r* – на *a*)

Здесь V_0 — глубина потенциальной ямы, b — коэффициент упругости, *r-a* — отклонение от положения равновесия. Напомним, что потенциал Морзе подобен реальному физическому потенциалу Леннарда-Джонса, но гораздо удобнее для проведения аналитических исследований, поэтому часто используется при исследовании динамики молекулярных цепочек, в том числе и методами численного моделирования.

Ввели безразмерные переменные, и записали нелинейное уравнение движения для n-ой частицы

$$\ddot{q}_{n} = \left[1 - e^{(q_{n} - q_{n+1})}\right]e^{(q_{n} - q_{n+1})} - \left[1 - e^{(q_{n-1} - q_{n})}\right]e^{(q_{n-1} - q_{n})}$$

Здесь точка означает производную по безразмерному времени т. Соответствующее линейное уравнение записывается в виде

$$\ddot{q}_n = (q_{n+1} - 2q_n + q_{n-1})$$

и записали дисперсионное уравнение цепочки:

$$\omega^2 = 4\sin^2\left(\frac{k}{2}\right)$$

Нетрудно видеть, что полоса пропускания теперь определяется соотношением $0 < \omega < 2$, т.е. значение критической частоты равно двум, а скорость звука, т.е. скорость длинноволновых фононов, равна 1.

В третьем разделе рассказали о решениях, которые локализованы в пространстве и периодические во времени, называемые бризерами, известны в некоторых пространственно-непрерывных моделях.

Типичным примерном является нелинейное уравнение синус-Гордона:

$$u_{xx} - u_{tt} = \sin u,$$

Которое имеет семейство решений [4,25]

$$u(x,t) = \pm 4 \operatorname{arctg}\left(\frac{\alpha \sin \frac{t}{\sqrt{1+\alpha^2}}}{ch \frac{\alpha x}{\sqrt{1+\alpha^2}}}\right)$$

где а – действительный параметр.

Во второй главе представлен алгоритм и процедура численного моделирования динамики Морзе-цепочки, возбуждаемой внешней гармонической силой. Были представлены серии расчетов для нескольких значений частоты (в середине полосы пропускания, на длинноволновом участке полосы, вблизи критической частоты и за пределами полосы пропускания) при малом уровне внешнего возмущения и сильном внешнем возмущении, причем симуляции проводились для нескольких значений длительности действия внешнего возмущения а так же проведён их анализ.

На рис. 4. представлены результаты моделирования в течение времени $\tau = 200$ для случая низкочастотной накачки в полосе пропускания ($\omega_{ex} = 0.7$), малом уровне возмущающего воздействия (v₀=0.0002) и достаточно большой длительности ($\tau_{ex} = 100$) возмущающей силы, действующей на $n_{ex} = 8$ частиц в середине цепочки. При этом значение $k_{ex} = -\pi/2$, определяющее разность фаз возмущающей силы для соседних частиц, выбиралось таким образом, чтобы обеспечить преимущественное распространение возмущений В ОДНОМ направлении цепочки **(B** расчетах преимущественно вдоль В положительном направлении).

Рис. 4. Результаты моделирования для случая низкочастотной накачки $(\omega_{ex}=0.7)$, на уровне возмущающего воздействия $v_0=0.0002$ и длительности возмущающей силы $\tau_{ex} = 100$: а)эволюция во времени распределения $v_n(\tau)$,

Зафиксируем теперь частоту излучения $\omega_{ex}=1$ и другие параметры, кроме амплитуды внешнего воздействия, которую будем варьировать в диапазоне v₀=0.0002 – 0.2, т.е. проходя 8 порядков по энергии.

б) реализация v_n в последний момент симуляции $\tau=200$

Результаты моделирования показывают, что до значения $v_0=0.01$ динамика цепочки соответствует описанной в подразделе 2.2, т.е. возбуждаются почти бездисперсные фононы, которые быстро (со скоростью ~1) убегают из области начального возбуждения.

a) view: 50.0000, 70.0000 scale: 1.00000, 1.00000

Рис. 5.Результаты моделирования для случая низкочастотной накачки (ω_{ex}=1), на уровне возмущающего воздействия v₀=0.02 и длительности возмущающей силы τ_{ex} = 100: а) эволюция во времени распределения v_n(t), б)реализация v_n в последний момент симуляции τ=200

a) view: 50.0000, 70.0000 scale: 1.00000, 1.00000

Рис. 6.Результаты моделирования для случая низкочастотной накачки $(\omega_{ex}=1.5)$, на уровне возмущающего воздействия $v_0=0.2$ и длительности возмущающей силы $\tau_{ex} = 100$: а) эволюция во времени распределения $v_n(t)$,

б) реализация v_n в последний момент симуляции $\tau=200$

На рисунке 6 при $v_0=0.2$ и $\omega_{ex}=1.5$ в полосе пропускания, мы наблюдаем ярко выраженные солитоны, и так как система имеет периодические граничные условия, эти солитоны начинают «выбегать» с другой стороны цепочки. В дальнейших симуляциях картина не меняется до $\tau_{ex}=20$, но при совсем малой длительности возмущающей силы $\tau_{ex}=10$ и $\tau_{ex}=5$, мы можем утверждать что образуются бризеры вблизи точек возмущения, живущие 190 и 195 единиц времени соответственно, после отключения внешнего возбуждения, что можно увидеть на рисунках 7а и 76.

Рис. 7.Результаты моделирования для случая низкочастотной накачки (ω_{ex}=1.5), на уровне возмущающего воздействия v₀=0.2 и длительности возмущающей силы: а)τ_{ex} = 10, б)τ_{ex} = 5.

Моделируя в критической частоте, мы можем утверждать что при возбуждении в полосе пропускания солитоны возбуждаются гораздо лучше, чем в зоне критической частоты.

ЗАКЛЮЧЕНИЕ

В результате исследования динамики цепочки частиц, связанных потенциальными силами Морзе и часть из которых возбуждается в течение некоторого времени внешней гармонической силой, установлено

1) при малом уровне энергии, вводимой в цепочку внешним воздействием, импульс исходного возмущения распространяется вдоль цепочки в виде цуга фононов практически без искажения, если частота возмущения соответствует примерно середине полосы пропускания или ниже нее, и происходит искажение формы импульса, если частота внешней силы близка к границе искажения наблюдаются полосы пропускания; сильные также при возбуждении, эффект требует внеполосном однако дальнейшего исследования;

2) при умеренном уровне энергии наблюдается формирование бризерного локализованных волн типа при возбуждении цепочки гармонической силой с частотой примерно в середине полосы пропускания, вследствие возбуждения второй гармоники, частота которой близка к критической частоте;

3) при высоком уровне энергии внешнего воздействия превалирующим эффектом является формирование сверхзвуковых солитонов; в то же время наблюдаются немобильные или медленно движущиеся локализованные возмущения с большим временем жизни, которые обладают свойствами немобильных или мобильных бризеров. Однако для более уверенного заключения о характере возмущений решетки требуются дальнейшие исследования, основанные анализе спектральных характеристик, на корреляционных функций, распределений вычисления различных кинетической и потенциальной энергий.

Список использованных источников

1. Flach S., Willis C.R. Discrete breathers //Phys. Reports. 1998. Vol. 295. P. 181-264.

2. Flach S., Gorbach A.V. Computational studies of discrete breathers from basics to competing length scales //International Journal of Bifurcation and Chaos. 2006. Vol. 16. P. 1645

3. Flach S., Gorbach A.V. Discrete Breathers: Advances in Theory and Applications // Phys. Reports. 2008. Vol. 467. P. 1.

4. MacKay R.S., Aubry S. Proof of existence os breathers for time-reversible or hamiltonian networks of weakly coupled oscillators. // Nonlinearity. 1994. Vol. 7. P. 1623

5. Trombettoni A., Smerzi A. Discrete Solitons and Breathers with Dilute Bose-Einstein Condensates // Physical Review Letters. 2001. V. 86. P. 2353-2356.

6. Butt I.A., Watt is J.A.D. Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice // Journal of Physics A: Mathematical and General. 2006. V. 39. P. 4955-4984.

7. Butt I.A., Wattis J.A.D. Discrete breathers in a two-dimensional hexagonal Fermi-Pasta-Ulam lattice // Journal of Physics A: Mathematical and General. 2006. V. 40. P. 1239-1264.

8. Floria L. M., Marin J. L., Martinez P. J., Falo F., Aubry S. Energy localisation in the dynamics of the Josephson-junction ladder // Europhysics Letters. 1996. V. 36. P. 539-544.

9. Franzosi R., Livi ROppo G. L., Politi A. Discrete Breathers in Bose-Einstein Condensates // Nonlinearity. 2011. V. 24. P. R89.

10. Виноградова М.Б., Семенов А.А. Основы теории распространения ультракоротких радиоволн в тропосфере. — М.: Изд-во АН СССР, 1963.

11. Брезовских Л.М. Волны в слоистых средах. — М.: Наука, 1973

12. Адамс М. Введение в теорию оптических волноводов. М.: Мир. 1984.

13. Снайдер А., Лав Дж. Теория оптических волноводов. — М.: Радио и связь. 1987.

14. Шифф Л. Квантовая механика. М.: Ин. лит-ра, 1957

15. Зегря Г. Г., Перель В. И. Основы физики полупроводников. - М.: ФИЗМАТЛИТ, 2009. - 336 с

16. Овчинников А.А. Локализованные долгоживущие колебательные состояния в молекулярных кристалах //ЖЭТФ. 1969. Т. 57, №1.С. 263.

17. Marin J.L., Aubry S. Breathers in nonlinear lattices: Numerical calculation from the anticontinuous limit. //Nonlinearity. 1996. Vol. 9. P. 1501.

18. Aubry S. Breathers in nonlinear latties: existence, linear stability and quantization //Physica D. 1997. Vol. 103. P. 201.

19. Takeno S., Kisoda K., Sievers A.J. Intrinsic localized vibrational modes in anharmonic crystals //Prog. Theor. Phys. Suppl. 1988. Vol. 94. P. 242-269.

20. Campbell D.K., Peyrard M. Chaos and order in nonintagrable model field theories //CHAOS Soviet-American Perspectives on Nonlinear Science (ed. Campbell D.K.). New York: American Institute of Physics. 1990. P. 305-334.

21. Denzler J. Nonpersistence of breather families for the perturbed sine Gordon equation //Commun. Math. Phys. 1993. Vol. 158. P. 397-430.

22. Aubry S. // Physica D. 2006. V. 216. P. 1-30.

23. Flach S. and Gorbach A. // Physics Reports. 2007. V. 467. P. 1–116.

24. Yusuke Doi, Kazuyuki Yoshimura // Wave Motion. 2007. V. 45. P. 83–99.

25. Bao-Feng Feng, Youn-Sha Chan // Mathematics and Computers in Simulations. 2007. V. 74. P. 292–301.

26. Yusuke Doi, Kazuyuki Yoshimura // Journal of the Physical Society of Japan. 2009. V. 78. P. 034401–034410.