Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра математического анализа

АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ В ЗАДАНИЯХ ОГЭ И ЕГЭ

МАГИСТРСКАЯ РАБОТА

автореферат

студентки 3 курса 322 группы

направления 44.04.01 Педагогическое образование

Механико-математического факультета

Карпенко Елены Ивановны

II		
Научный руководитель		
Доцент кафедры математического анализа		А.М. Захаров
	подпись, дата	
Зав. кафедрой		
Профессор, доктор		Д.В.Прохоров
	подпись, дата	

Выпускная квалификационная работа магистра представляет собой разработку электронного образовательного курса «Арифметическая и геометрическая прогрессии в системе ГИА». Данный образовательный курс предназначен для учащихся 9 — 11-х классов основного общего образования, и содержит элементы, относящиеся к обучению на базовом уровне и профильном уровне.

Электронный образовательный курс «Арифметическая и геометрическая прогрессии в системе ГИА» — это электронный ресурс, который содержит полный комплекс учебно-методических материалов, необходимых для освоения данной темы согласно учебному плану в рамках образовательной программы, и обеспечивает все виды работы в соответствии с программой дисциплины, включая практикум, средства для контроля качества усвоения материала, методические рекомендации для обучающегося по изучению данной темы.

Цели создания электронного образовательного курса:

- повышение качества обучения при реализации образовательных программ с применением электронного обучения и дистанционных образовательных технологий;
- оптимизация деятельности педагогического состава, работающего с применением электронного обучения и дистанционных образовательных технологий;
- создание электронной информационно-образовательной среды, позволяющей осуществлять индивидуальный подход в образовательном процессе.

Задачи создания электронного образовательного курса:

- соответствие единым требованиям к структуре, отдельным элементам ЭОК и технологиям обучения по нему в системе дистанционного образования Ipsilon;
- обеспечение образовательного процесса учебно-методическими и контрольно измерительными материалами по теме «Арифметическая и

геометрическая прогрессии в системе ГИА», реализуемой в системе дистанционного образования Ipsilon;

- постоянное совершенствование и обновление комплекса учебнометодических материалов по данной теме.

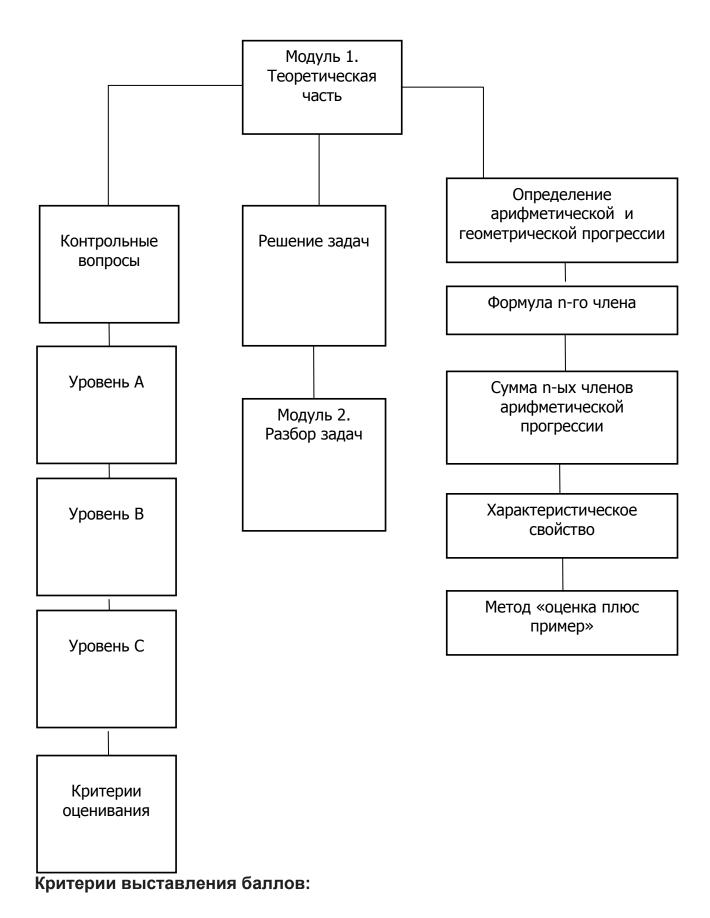
Тема «Арифметическая и геометрическая прогрессии в системе ГИА» в курсе алгебры средней школы изучается обособленно, лишь в девятом классе, мало перекликаясь с другими разделами школьной программы. Но несмотря на это задачи, для решения которых необходимо знать не только формулы n-го члена и суммы первых n членов, но и свойства арифметической и геометрической прогрессий, предлагаются на ЕГЭ и на вступительных экзаменах в вузы. А для того, чтобы знания ученика были на достаточно активизировать высоком уровне, необходимо его познавательную при изучении прогрессий. Поэтому теоретические деятельность практические исследования по данной теме представляются актуальными в настоящее время и обусловлены насущными потребностями средних школ различного уровня: как общеобразовательных, так и с математическим уклоном.

В работе объектом исследования является процесс обучения алгебре в средней школе.

Предметом исследования выступает методика изучения прогрессий и ее применение в средней общеобразовательной школе.

Практическая значимость работы определяется тем, что она может быть использована в качестве научно-методического пособия, которое поможет в преподавании темы «Арифметическая и геометрическая прогрессии в системе ГИА» в курсе алгебры средней общеобразовательной школы, а также в подготовке учащихся к сдаче ЕГЭ и вступительных экзаменов в вузы.

Работа состоит из введения, теоретического материала и разработанных заданий.



За правильный ответ на устный вопрос –1б За правильный ответ задания из уровня А – 1 б

За правильный ответ задания из уровня В – 2 б

За правильный ответ задания из уровня С – 3 б Максимальное количество баллов – 35 = 100 %

Критерии выставления оценок:

Оценка «5» - от 80 до 100 % - от 28 до 35 б

Оценка «4» - от 70 до 80 % - от 24 до 28 б

Оценка «3» - от 60 до 70 % - от 21 до 24 б

Оценка «2» - до 60 % - до 21 б

Работа прошла апробацию в МОУ «СОШ №40».

По результатам выполнения выпускной квалификационной работы магистра на сайте http://ipsilon-dev.sgu.ru/ выставлены:

- теоретический материал по теме «Арифметическая и геометрическая прогрессии в системе ГИА»
- контрольные вопросы по теории с выбором ответа
- набор задач трёх уровней сложности.

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ

Будем выписывать в порядке возрастания положительные четные числа. Первое такое число равно 2, второе 4, третье 6 и т.д. Получим последовательность 2, 4, 6,

Очевидно, что на четвертом месте этой последовательности будет число 8, на десятом - число 20 и т.д. Вообще для любого номера п можно указать соответствующее ему положительное четное число, оно равно 2n.

Рассмотрим еще одну последовательность. Будем выписывать в порядке убывания правильные дроби с числителем, равным 1:

$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$, ...

Для любого номера п мы можем узнать соответствующую ему дробь;

она равна
$$\frac{1}{n+1}$$
.

Числа, образующие последовательность, называют соответственно первым, вторым и т.д. членами последовательности. Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена. Например, a_1, a_2, a_3 и т.д. (читают: "a первое, a второе, a третье " и т.д.). Вообще член последовательности с номером п, или, как говорят, п-й член последовательности, обозначают a_n . Саму последовательность будем обозначать так: a_n .

Заметим, что последовательность может содержать конечное число членов. В таком случае её называют конечной. Примером конечной последовательности служит последовательность двухзначных чисел:

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы, выражающей её n-й член как функцию номера n. Такую формулу называют формулой n-го члена последовательности. Например, последовательность положительных четных чисел можно задать формулой $a_n=2n$, а последовательность

правильных дробей с числителем, равным 1, - формулой $b_n = \frac{1}{n+1}$.

Определение. Арифметической прогрессией называется последовательность, в которой каждый член, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

Иначе говоря, последовательность (a_n) - арифметическая прогрессия, если для любого натурального п выполняется условие:

$$a_{n+1} = a_n + d_{n+1}$$
, (1)

где d - некоторое число.

Из определения арифметической прогрессии следует, что разность между любым её членом, начиная со второго, и предыдущим членом равна d, т.е. при любом натуральном n верно равенство:

$$a_{n+1} - a_n = d$$

Число d называют разностью арифметической прогрессии.

Чтобы задать арифметическую прогрессию, достаточно указать первый её член и разность.

Зная первый член и разность арифметической прогрессии, можно найти любой ее член, вычисляя последовательно второй, третий, четвертый и т. д. члены. Но для нахождения члена прогрессии с больший номером такой способ неудобен. Постараемся отыскать способ, требующий меньшей вычислительной работы.

По определению арифметической прогрессии

$$a_2 = a_1 + d$$
,
 $a_3 = a_2 + d = (a_1 + d) + d = a_1 + 2d$,
 $a_4 = a_3 + d = (a_1 + 2d) + d = a_1 + 3d$,
 $a_5 = a_4 + d = (a_1 + 3d) + d = a_1 + 4d$.

Точно так же находим, что $a_6=a_1+5d,\ a_7=a_1+6d$, и вообще, чтобы найти a_n нужно к a_1 прибавить (n - 1)d, т. е.

$$a_n = a_1 + d(n-1).$$
 (2)

Мы получили формулу n-го члена арифметической прогрессии. Докажем ее методом математической индукции.

1. При n=1 эта формула верна: $a_1 = a$.

Предположим, что формула (2) верна при n=k , $k \ge 1$, т.е. $a_k = a_1 + d(k-1)$.

По определению арифметической прогрессии $a_{k+1}=a_k+d$. Подставляя сюда выражение для k-го члена, получим $a_{k+1}=a_1+d(k-1)+d=a+dk$, а это есть формула (2) при n=k+1 .

Из принципа математической индукции следует, что формула (2) верна для любого натурального п.

Что и требовалось доказать.

Формулу n-го члена арифметической прогрессии $a_n = a_1 + d(n-1)$ можно записать иначе: $a_n = dn + (a_1 - d)$.

Отсюда ясно, что любая арифметическая прогрессия может быть задана формулой вида $a_n = kn + b$, где k и b - некоторые числа.

Верно и обратное: последовательность (a_n) , заданная формулой вида $a_n = kn + b$, где k и b - некоторые числа, является арифметической прогрессией.

Действительно, найдем разность (n+1)-го и n-го членов последовательности (a_n) :

$$a_{n+1} - a_n = k(n+1) + b - (kn+b) = kn + k + b - kn - b = k.$$

Значит, при любом п справедливо равенство $a_{n+1} = a_n + k$, и по определению последовательность (a_n) является арифметической прогрессией. Заметим, что разность этой прогрессии равна k.

Свойства арифметической прогрессии.

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому его соседних членов, т.е. при $k \ge 2$ верной является формула

$$a_k = \frac{a_{k-1} + a_{k+1}}{2} \tag{3}$$

Действительно, при $k \ge 2$ имеем $a_k = a_{k-1} + d$ и $a_k = a_{k+1} - d$. Складывая почленно эти равенства, получим $2a_k = a_{k-1} + a_{k+1}$, откуда следует (3).

У конечной арифметической прогрессии $a_1; a_2; ...; a_n$ сумма членов, равноотстоящих от ее концов, равна сумме крайних членов, т.е. для k=1,2,...n верной является формула

$$a_k + a_{n-k+1} = a_1 + a_n$$
 (4)

Действительно, в конечной арифметической прогрессии $a_1; a_2; ...; a_n$ члены a_k и a_{n-k+1} равноотстоят от концов. По формуле (2) $a_k = a_1 + d(k-1)$ и $a_{n-k+1} = a_1 + d(n-k)$. Сумма этих членов равна $a_k + a_{n-k+1} = 2a_1 + d(n-1)$ и равна сумме крайних членов $a_1 + a_n = 2a + d(n-1)$.

Сумма членов конечной арифметической прогрессии равна произведению полусуммы крайних членов на число членов, т.е. если $S_{\scriptscriptstyle n} = a_{\scriptscriptstyle 1} + a_{\scriptscriptstyle 2} + \ldots + a_{\scriptscriptstyle n-1} + a_{\scriptscriptstyle n}$

$$S_n = \frac{a_1 + a_n}{2} \cdot n \tag{5}$$

Действительно, если

$$S_n = a_1 + a_2 + ... + a_{n-1} + a_n$$
, TO

$$S_n = a_n + a_{n-1} + \dots + a_2 + a_1$$

Складывая почленно эти равенства и используя свойство 2, получаем $2S_n = (a_1 + a_n) + (a_2 + a_{n-1} + \ldots + (a_1 + a_n) = n(a_1 + a_n), \text{ откуда следует формула}$ (5) [25].

Заметим, что если заданы первый член и разность арифметической прогрессии, то удобно пользоваться формулой суммы, представленной в другом виде. Подставим в формулу (5) вместо (a_n) выражение $a_1 + d(n-1)$,

$$S_{_{n}}=\frac{(a_{_{1}}+a_{_{1}}+d(n-1))n}{2},$$
 т.е.

$$S_{n} = \frac{2a_{1} + d(n-1)}{2}n.$$
 (6)

ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ

Рассмотрим последовательность, членами которой являются степени числа 2 с натуральными показателями: 2; 2^2 ; 2^3 ; 2^4 ;

Каждый член этой последовательности, начиная со второго, получается умножением предыдущего члена на 2. Эта последовательность является примером геометрической прогрессии.

Определение. Геометрической прогрессией называется последовательность отличных от нуля чисел, в которой каждый член, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.

Иначе говоря, последовательность (b_n) - геометрическая прогрессия, если для любого натурального п выполняются условия:

$$b_n \neq 0$$
 M $b_{n+1} = b_n \cdot q$, (1)

где q - некоторое число. Обозначим, например, через (b_n) последовательность натуральных степеней числа 2. В этом случае для любого натурального п верно равенство $b_{n+1} = b_n \cdot 2$; здесь q = 2.

Из определения геометрической прогрессии следует, что отношение

любого ее члена, начиная со второго, к предыдущему члену равно q, т.е. при

любой натуральном n верно равенство:
$$\frac{b_{{}_{n+1}}}{b_{{}_{n}}} = q$$
.

Число q называют знаменателем геометрической прогрессии. Очевидно, что знаменатель геометрической прогрессии отличен от нуля.

Чтобы задать геометрическую прогрессию, достаточно указать ее первый член и знаменатель.

Зная первый член и знаменатель геометрической прогрессии, можно найти последовательно второй, третий, а также любой её член:

$$\begin{aligned} b_2 &= b_1 \cdot q, \\ b_3 &= b_2 \cdot q = (b_1 \cdot q)q = b_1 \cdot q^2, \\ b_4 &= b_3 \cdot q = (b_1 \cdot q^2)q = b_1 \cdot q^3, \\ b_5 &= b_4 \cdot q = (b_1 \cdot q^3)q = b_1 \cdot q^4. \end{aligned}$$

Точно так же находим, что $b_6 = b_1 \cdot q^5$ и т. д. Вообще, чтобы найти (b_n) , мы должны b1 умножить на q^{n-1} , т. е.

$$b_n = b_1 q^{n-1}$$
. (2)

Мы получили формулу n-го члена геометрической прогрессии. Докажем ее методом математической индукции.

Формула (2), очевидно, верна при n=1.

Предположим, что она верна и при $n = k, k \ge 1$, т.е. $b_k = b_1 q^{k-1}$.

Из (1) следует $b_{k+1} = b_1 q^k$, то есть формула (2) верна и при n = k+1.

Из принципа математической индукции следует, что формула (2) справедлива для любого натурального п.

Что и требовалось доказать.

Свойства геометрической прогрессии.

1. Квадрат каждого члена геометрической прогрессии, начиная со второго, равен произведению соседних членов, то есть при $k \ge 2$ верной является формула

$$b_k^2 = b_{k-1} \cdot b_{k+1}$$
. (3)

Если все члены геометрической прогрессии положительны, то это свойство формулируется так: каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому его соседних членов, т.е. $b_{\scriptscriptstyle k} = \sqrt{b_{\scriptscriptstyle k-1} \cdot b_{\scriptscriptstyle k+1}}$.

Действительно, при $k \ge 2$ имеем $b_k = b_{k-1} \cdot q$ и $b_k = b_{k+1} \cdot q^{-1}$. Перемножая почленно эти равенства, получим $b_k^2 = b_{k-1} \cdot b_{k+1}$. А это и есть равенство (3).

У конечной геометрической прогрессии $b_1, b_2, ..., b_n$ произведение членов, равноотстоящих от ее концов, равно произведению крайних членов, т.е.

$$b_{k} \cdot b_{n-k+1} = b_{1} \cdot b_{n} \tag{4}$$

Действительно, в конечной геометрической прогрессии $b_1, b_2, ..., b_n$ члены b_k и b_{n-k+1} равноотстоят от концов. По формуле (2) $b_k = b_1 \cdot q^{k-1}$ и $b_{n-k+1} = b_1 \cdot q^{n-k}$. Произведение этих членов $b_k \cdot b_{n-k+1} = b_1^2 \cdot q^{k-1+n-k}$ и равно произведению крайних членов $b_1 \cdot b_n = b_1^2 \cdot q^{n-1}$. Значит, $b_k \cdot b_{n-k+1} = b_1 \cdot b_n$. А это и есть равенство (4).

Выведем теперь формулу суммы п первых членов произвольной геометрической прогрессии. Воспользуемся тем же приемом, с помощью которого была вычислена сумма S.

Пусть дана геометрическая прогрессия (b_n) . Обозначим сумму п первых ее членов через S_n :

$$S_n = b_1 + b_2 + ... + b_{n-1} + b_n$$
. (5)

Умножим обе части этого равенства на q: $S_{\scriptscriptstyle n} q = b_{\scriptscriptstyle 1} q + b_{\scriptscriptstyle 2} q + \ldots + b_{\scriptscriptstyle n-1} q + b_{\scriptscriptstyle n} q.$

учитывая, что $b_1q=b_2$, $b_2q=b_3$, ..., $b_{n-1}q=b_n$, получим:

$$S_n q = b_2 + b_3 + \dots + b_n + b_n q$$
 (6)

Вычтем почленно из равенства (6) равенство (5) и приведем подобные $_{\mathsf{члены:}} S_{\scriptscriptstyle n} q - S_{\scriptscriptstyle n} = (b_{\scriptscriptstyle 1} q + b_{\scriptscriptstyle 2} q + \ldots + b_{\scriptscriptstyle n-1} q + b_{\scriptscriptstyle n} q) - (b_{\scriptscriptstyle 1} + b_{\scriptscriptstyle 2} + \ldots + b_{\scriptscriptstyle n-1} + b_{\scriptscriptstyle n}),$

$$S_n q - S_n = b_n q - b_1$$
, $S_n (q - 1) = b_n q - b_1$.

$$S_n = \frac{b_n q - b_1}{q - 1}$$
, тогда $S_n = \frac{p_n q - b_1}{q - 1}$. (7)

Мы получили формулу суммы п первых членов геометрической прогрессии, в которой $q \neq 1$. Если q = 1, то все члены прогрессии равны первому члену и $S_n = nb_1$ [25].

Заметим, что при решении многих задач удобно пользоваться формулой суммы п первых членов геометрической прогрессии, записанной в другом виде. Подставим в формулу (7) вместо $b_{\rm n}$ выражение $b_{\rm l}q^{^{\rm n-l}}$. Получим:

$$S_n = \frac{b_1(q^n - 1)}{q - 1},$$
 если $q \neq 1$. (8)

В результате проведения работы были решены все поставленные задачи, и, тем самым, достигнута основная цель.

Работа предназначена для начинающих учителей средних школ, желающих более детально познакомиться с методикой преподавания темы «Арифметическая и геометрическая прогрессии», а также для студентов физико-математических факультетов педагогических вузов, которым предстоит педагогическая практика.

В работе предлагаются

- теоретическая часть, подкрепленная примерами с подробным решением;
- методические рекомендации к изучению теоретического материала, урокам решения задач, а также к урокам повторения, обобщения, систематизации и проверке знаний по теме «Арифметическая и геометрическая прогрессии», позволяющие активизировать познавательную деятельность учеников.

Данная работа направлена на совершенствование учебного процесса,

на применение на практике новых технологий обучения, основанных на принципах гуманизма, индивидуализации и дифференциации обучения и ориентированных на свободное развитие личности школьника.

СПИСОК ЛИТЕРАТУРЫ

- 1. А.Г. Мордкович, Алгебра, 10 класс, учебник, 2012г.
- 2. И.В. Яковлев «Задача С6 на ЕГЭ по математике»
- 3. Азиев Н. Тема «Арифметическая и геометрическая прогрессии», 9 кл. // Математика. Еженедельное учебно-методическое приложение к газете Первое сентября. 2004. № 23. с. 14-17.
- 4. Апанасов П.Т., Апанасов Н.П. Сборник математических задач с практическим содержанием. Кн. для учителя. М.: Просвещение, 1987.-110 с.
- 5. Борчугова З.Г., Батий Ю.Ю. Организация контроля знаний учащихся в обучении математике. Пособие для учителей. М.: Просвещение, 1980. 96 с.
- 6. Буренок И.И., Тубаева Л.И., Цедринский А.Д. Психологопедагогические аспекты урока математики: учебно-методическое пособие // Под общей ред. проф. С. Г. Манвелова. Армавирский государственный педагогический институт, СФ АГПИ. - Славянск-на-Кубани, 2000. - 72 с.
- 7. Буряк В.К. Самостоятельные работы учащихся. Кн. для учителя. М.: Просвещение, 1984. 64 с.
- 8. Гиршович В.С. Виды самостоятельных работ // Математика в школе: научно-теоретический и методический журнал. 1998. № 3. М.: ООО Школьная пресса. С. 37-40.
- 9. Жохов В.И., Крайнева Л.Б. Уроки алгебры в 9 кл. Пособие для учителей к учебнику «Алгебра, 9» Макарычева Ю.Н. и др. под ред. Теляковского С.А. 2001. М.: Вербум М. 160 с.
- 10. Инютина Е.В., Симонов А.С. Геометрическая прогрессия в экономике // Математика в школе: научно-теоретический и методический журнал. 2001. № 5. М.: ООО Школьная пресса. С. 18-21.

11. Казнев И. Релейный зачет с тестовыми заданиями по теме «Прогрессии» // Математика в школе: научно-теоретический и методический журнал. 2001. № 3. - М.: ООО Школьная пресса. - С. 39-42.