Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Базовая кафедра компьютерной физики и метаматериалов в Саратовском филиале Института радиотехники и электроники им. В.А. Котельникова РАН

Распространение лазерных импульсов в световоде с керровской нелинейностью

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 4 курса 431 группы

Направления 011200 «Физика» физического факультета

Бражника Дмитрия Сергеевича

Научный руководитель	
Профессор, д. фм.н.	Е.А.Романова
Зав. Кафедрой	
Профессор, д. фм.н	В.М.Аникин

Саратов 2016

Введение

Изучение характера распространения световых импульсов в волокне является одной из центральных задач волоконной оптики. Сравнение результатов численного моделирования с экспериментом позволяет оценить, насколько правильно используемые физические модели описывают реальные физические процессы. Практическая важность таких исследований связана с широким использованием оптического волокна в современных сетях связи.

При передаче импульсных сигналов в волоконных световодах после прохождения некоторого расстояния импульсы искажаются, расширяются и может наступает момент, когда соседние импульсы перекрывают друг друга.

Уширение импульсов обусловлено дисперсией групповой скорости электромагнитных волн, распространяющихся в световоде. Дисперсия является также и причиной уменьшения амплитуды импульсов. Дисперсия в волоконных световодах является основной причиной искажения передаваемого сигнала,

Таким образом, дисперсия групповой скорости является одной из основных оптических характеристик волокон.

В настоящее время одним из перспективных направлений лазерной физики является создание источников широкополосного излучения в среднем инфракрасном диапазоне длин волн (3-15 мкм). В таких задачах необходимо определить спектральную область, где возможно осуществление солитонного режима распространения лазерных импульсов.

<u>Целью данной</u> выпускной квалификационной работы является определение условий осуществления солитонного режима распространения лазерных импульсов в среднем инфракрасном диапазоне длин волн.

2

Задачи:

1.Изучение особенностей распространения сверхкоротких лазерных импульсов в диспергирующих и нелинейных средах.

2. Изучение теоретической модели распространения сверхкоротких лазерных импульсов в диспергирующих и нелинейных средах.

3. Расчет коэффициента дисперсии групповой скорости для основной моды волоконного световода из халькогенидного стекла при различных значениях радиуса сердцевины.

4. Компьютерное моделирование распространения фемтосекундного лазерного импульса в основной моде волоконного световода из халькогенидного стекла в режиме нормальной и аномальной дисперсии.

5. Анализ полученных результатов и выводы.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ ЛАЗЕРНЫХ ИМПУЛЬСОВ В ВОЛОКОННОМ СВЕТОВОДЕ С КЕРРОВСКОЙ НЕЛИНЕЙНОСТЬЮ

Задача численного моделирования распространения оптических импульсов в волоконном световоде сводится к двум этапам. Прежде всего, нужно учесть и определить точное значение коэффициента дисперсии групповой скорости (в дальнейшем ДГС). Затем, используя полученное значение коэффициента ДГС, рассчитать временной профиль оптического импульса при его распространении в светводе.

Проведем расчет для оптического световода из сульфида мышьяка (As₂S₃). Разность показателей преломления сердцевины и оболочки составляет 0.004. Такой световод прозрачен в области длин волн 0.6 – 7 мкм.

Для оценки коэффициента дисперсии воспользуемся приближенным выражением: формула Сельмейера – для As₂S₃ (Таблица1). В области длин волн 1-2 мкм дисперсия такого материала является нормальной, нуль ДГС соответствует длине волны 5 мкм.

Таблица 1

Вещество	n(λ)
As_2S_3	$(1 + \frac{0.95 * \lambda^2}{\lambda^2 - 750} + \frac{0.12 * \lambda^2}{\lambda^2 - 0.20} + \frac{0.88 * \lambda^2}{\lambda^2 - 0.12} + \frac{1.92 * \lambda^2}{\lambda^2 - 0.06} + \frac{1.9 * \lambda^2}{\lambda^2 - 0.02})^{1/2}$

Используя это выражение, можно вычислить искомый коэффициент дисперсии β₂:

$$\beta_2 = \frac{\partial^2 k}{\partial \omega^2} \Big|_{\omega_0} = -\frac{1}{u^2} \frac{\partial u}{\partial \omega} \Big|_{\omega_0} = \frac{\lambda_0^3}{2\pi c^3} \frac{\partial^2 n}{\partial \lambda^2} \Big|_{\lambda_0}$$
(1)

Рассчитаем значение коэффициента дисперсии β_2 для разных радиусов сердцевины исследуемого световода. В Таблице 2 приведены результаты расчета β_2 для разных радиусов сердцевины, а также номера рисунков, на которых показаны соответствующие дисперсионные зависимости.

Таблица 2

Номер	Радиус	Длина		Длина	
рисунка	сердцевины, а	волны λ,	β_2 ,пс/мкм	волны λ,	$eta_2,$ пс/мкм
		МКМ		МКМ	
Рисунок 15	1		4.638*10 ⁻⁷		$-1.274*10^{-8}$
Рисунок 16	3	1.55	4.726*10 ⁻⁷	5	-1.265*10 ⁻⁸
Рисунок 17	5		4.642*10 ⁻⁷		2.1*10 ⁻⁸
Рисунок 18	8		4.625*10 ⁻⁷		3.05*10 ⁻⁸

Рисунок 1

Рисунок 2

Как видно на рисунках 1 – 4, использование световода с узкой сердцевиной позволяет переместить положение нуля дисперсии групповой скорости в сторону меньших длин волн. Это важно при разработке нелинейных оптических устройств для преобразования частоты лазерного излучения.

Расчет уширения импульса в волоконном световоде

Для рассмотрения распространения импульса в нелинейной среде с дисперсией воспользуемся следующим уравнением:

$$\iota \frac{\partial A}{\partial z} = -\frac{\iota}{2} \alpha A + \frac{1}{2} \beta_2 \frac{\partial^2 A}{\partial T^2} - \gamma A^2 A$$
⁽²⁾

В таблице 3 приведены параметры необходимые для расчетов.

Таблица 3

Длина волны, λ[мкм]	1.55	5
Площадь эффективной моды, $A_{_{}\phi\phi}$ [мкм ²]	70	
Нелинейный показатель преломления, <i>n</i> ₂ [см ² /Вт]	5*10 ⁻¹⁴	
Дисперсионный параметр, β_2 [$\phi c^2/мкм$]	0.47	-0.012
Длительность импульса, <i>Z</i> [фс]	10	5
Амплитуда, А [В/см]	100	

На начальном этапе моделирования, построим начальный профиль импульса *A*(*z*=0) (Рисунок 5).

Рисунок 5. Профиль лазерного импульса в начальной точке *z*=0.

Рассмотрим распространение лазерного импульса в режиме номальной ДГС, когда пиковая длина волны приходится на 1.55 мкм.

С учетом действия дисперсии групповой скорости построим профиль импульса на расстоянии в 110 мкм, при этом полагая, что нелинейный коэффициент у=0 (Рисунок 6).

Рисунок 6. Профиль лазерного импульса в точке z=110 мкм с учетом ДГС.

Сравнивая рисунки 5 и 6, можем сравнить профили импульсов и увидеть, как изменился профиль импульса при его распространении в волокне в результате дисперсионного уширения (Рисунок 7).

Рисунок 7. Дисперсионное уширение лазерного импульса.

Теперь построим профиль импульса на том же расстоянии в 110 мкм, но с учетом керровской нелинейности, когда γ ≠ 0 (Рисунок 8).

Рисунок 8. Профиль лазерного импульса в точке z=110 мкм с учетом ДГС и ФСМ.

Сравним начальный профиль импульса с профилем, показанным на рисунке 8 (Рисунок 9).

Рисунок 9. Дисперсионное уширение лазерного импульса в условиях фазовой самомодуляции.

Таким образом, построены профили лазерного импульса при заданном значении ДГС, но при разном значении коэффициента нелинейности γ , а

именно при γ=0 и γ≠0. Теперь сравним полученные результаты, построив на графике все три профиля импульса (Рисунок 10).

Рисунок 10. А-начальный профиль импульса, В – профиль импульса при γ=0, Спрофиль импульса при γ≠0.

На рисунке 10 видно, что при распространении в режиме нормальной ДГС фазовая самомодуляция приводит к дополнительному уширению импульса.

Теперь рассмотрим распространение лазерного импульса в световоде с радиусом сердцевины 3 мкм в режиме аномальной ДГС, когда пиковая длина волны приходится на 5 мкм.

Построим начальный профиль импульса *A*(*z*=0) для данного случая (Рисунок 11).

Рисунок 11. Профиль лазерного импульса в начальной точке z=0.

С учетом действия дисперсии групповой скорости построим профиль импульса на расстоянии в 480 мкм, при этом полагая, что нелинейный коэффициент *у*=0 (Рисунок 12).

Рисунок 12. Профиль лазерного импульса в точке z = 480 мкм с учетом ДГС.

Далее построим профиль импульса на том же расстоянии в 480 мкм, но с учетом керровской нелинейности, когда γ ≠ 0 (Рисунок 13).

Рисунок 13. Профиль лазерного импульса в точке z = 480 мкм с учетом ДГС и ФСМ.

Таким образом, построены профили лазерного импульса при заданном значении ДГС, но при разном значении коэффициента нелинейности γ , а именно при $\gamma=0$ и $\gamma\neq0$. Теперь сравним полученные результаты, построив на графике все три профиля импульса (Рисунок 14).

Рисунок 14. А-начальный профиль импульса, В – профиль импульса при γ=0, Спрофиль импульса при γ≠0.

На рисунке 14 видно, что при распространении в режиме аномальной ДГС фазовая самомодуляция приводит к сужению импульса, т.е. в данном случае возможен солитонный режим распространения.

Заключение

В данной работе построена и успешно применена для расчетов компьютерная модель распространения сверхкороткого лазерного импульса в халькогенидном стекле с учетом дисперсии материала и исследовано, каким образом процесс уширения импульса зависит от длины волны. Показано, что использование волоконного световода с узкой сердцевиной позволяет управлять положением нуля дисперсии групповой скорости на шкале длин волн. В ближнем ИК диапазоне осуществление солитонного режима невозможно вследствие большой дисперсии халькогенидного стекла в этой области. Однако, в среднем ИК диапазоне, где находится нуль ДГС халькогенидного стекла, возможно осуществление солитонного режима распространения лазерных импульсов в заданной области длин волн.

Приведенные результаты могут быть использованы при создании новых оптических материалов и волноводных структур, обладающих заданными нелинейными и дисперсионными свойствами.