МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	нефтехимии	гехногенной	безопасности

ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ ВИСБРЕКИНГА ПУТЁМ УСТАНОВКИ УЛЬТРАЗВУКОВЫХ УСТРОЙСТВ

Введение Бакалаврская работа Леонкиной Т.О. посвящена моделированию работы секции висбрекинга гудрона в условиях применения очистки теплообменных аппаратов при помощи ультразвуковых устройств и оценке эффективности от их внедрения.

С каждым годом содержание лёгких углеводородов в добываемой нефти уменьшается, а тяжелых увеличивается. Сырьем для получения котельных топлив становятся тяжелые и высоковязкие гудроны с значительным содержанием смол и асфальтенов. В связи с углублением переработки нефти существенно возросла роль процесса висбрекинга. Включение висбрекинга в схемы переработки нефти позволяет с небольшими затратами превращать высоковязкие гудроны в котельное топливо. [1,2]

Основным направлением на НПЗ является создание и модернизация процессов для более глубокой переработки нефти. Простым и экономически выгодным способом переработки гудрона является висбрекинг (неглубокий термический крекинг). Использование процесса позволяет снизить в несколько раз вязкость остатка по сравнению с сырьем, а также получить небольшое количество (5-20%) светлых дистиллятов и небольшое количество газов. В качестве сырья еще возможно использовать мазут, тяжелые нефти и тяжелые нефтепродукты. [3,4]

Для подведения существующих установок к современным условиям работы они подвергаются реконструкции. При этом учитываются условия капиталовложения в новое оборудование с учетом минимизации финансовых вложений или наиболее полного использования уже имеющегося в действии оборудования. [5,6]

Очевидно, что необходимо решать вопросы об оптимизации, расширении и увеличении доли висбрекинга на нефтеперерабатывающих предприятиях.[7]

Совершенствование технологий, аппаратурного оформления и повышение эффективности процесса висбрекинга является актуальной задачей.

Целью работы является оценка актуальности внедрения ультразвуковой очистки теплообменных аппаратов на секции подогрева гудрона с учётом достигаемых экономических эффектов на основе технологического регламента секции висбрекинга гудрона ОАО «Саратовский НПЗ» № 05766646-07-2006.

Выпускная квалификационная работа Леонкиной Татьяны Олеговны «Повышение энергоэффективности висбрекинга путём установки ультразвуковых устройств» состоит из 61 страницы и содержит следующие главы:

Глава 1 – Литературный обзор;

Глава 2 – Загрязнение оборудования в процессе висбрекинга;

Глава 3 – Принципы и особенности ультразвуковой очистки;

Глава 4 — Расчётная часть;

Глава 5 – Экономический расчёт.

Основное содержание работы. В первой главе выпускной квалификационной работы выполнен литературный обзор. Представлена информация о висбрекинге нефтяных остатков, общая характеристика процесса. Описан химизм процесса висбрекинга. Изложена информация об используемом сырье и получаемых в этом процессе продуктах и их применении.

Висбрекинг - наиболее мягкая форма термического крекинга, представляет собой процесс неглубокого расщепления нефтяных остатков в относительно легких условиях (под давлением до 5 МПа и температуре 430-490°С) с целью уменьшения вязкости остатков для получения из них товарного котельного топлива. Сырьем процесса являются главным образом гудроны, мазут и другие тяжелые остатки, которые характеризуются сложным химическим составом, агрегатным состоянием отдельных компонентов, строением, свойствами, размерами частиц структурных образований. [8,9]

Данный процесс представляет собой совокупность реакций уплотнения и расщепления молекул. В зависимости от состава сырья и температуры процесса

преобладают те или другие реакции: при небольших температурах – реакции полимеризации, при высоких - реакции разложения. [9,10]

Преобразование компонентов исходного сырья происходит преимущественно по радикально-цепному механизму. Превращения при висбрекинге обусловлены переходом сырья с большим запасом свободной энергии в низкомолекулярные газообразные, среднемолекулярные дистиллятные фракции и кокс, имеющие меньший запас свободной энергии. [12]

Важно отметить, что каждый акт разрыва связей (прежде всего C - C, C - S) требует значительных затрат энергии, поэтому глубина расщепления молекул сырья зависит от количества тепла, переданного в ходе нагрева в печи.

Висбрекинг является типичным термодеструктивным процессом переработки тяжелых остатков в мягком режиме, в результате которого получается 2-5% топливного газа, 3-8% бензиновой фракции, 4-6% легкого газойля и 80-85% маловязкого остатка(мазут топочный), выкипающего выше 300°С, используемого в качестве котельного топлива.

Продукты установки висбрекинга используются:

- газ углеводородный (топливный) после очистки от сероводорода раствором амина используется в качестве топлива на установке и других объектах завода;
- бензиновая фракция после очистки используется в качестве компонента при приготовлении бензина А-80;
- топочный мазут M-100 используется в качестве жидкого топлива на электростанциях, ТЭЦ, и т.д.:
- рынок бензина А-80 и мазута практически неограничен.

Вторая глава содержит информацию о процессе образования отложений кокса в теплообменном оборудовании, описывает проблемы, связанные с закоксовыванием теплообменного оборудования в процессе висбрекинга. Также

во второй главе представлена информация о гидромеханическом методе очистки, осуществляющемся на данный момент на Саратовском нефтеперерабатывающем заводе, описаны особенности процесса очистки и его недостатки.

По мере повышения степени превращения, в сырье нарастает концентрация продуктов реакций поликонденсации - смол и асфальтенов. Процессы ассоциации, укрупнения молекул, как правило, идут с выделением тепла, в результате этого в реакционной массе начинают накапливаться карбено-карбоидные и коксоподобные компоненты, нежелательные в процессе из-за резкого возрастания вязкости жидкой массы висбрекинга, а также образования коксовых отложений на внутренних поверхностях оборудования. Формирование коксового слоя приводит к забивке труб, перегреву стенок труб, снижению агрегативной устойчивости остатков при повышенных температурах, которое ведет также к усилению коксообразования, ухудшению теплопередачи и дальнейшей активации отложения кокса. [11,12]

Жидкая фаза становится агрегативно неустойчивой, и асфальтены начинают флокулировать, образуя карбены и карбоиды. При достижении коллоидным раствором критической концентрации карбены и карбоиды образуют гелеобразную фазу, осаждающуюся на внутренних поверхностях аппаратов. Если через такие поверхности подводится тепло, выпавшая фаза незамедлительно коксуется на перегретых стенках. Процессы закоксовывания оборудования абсолютно недопустимы и являются главным фактором, ограничивающим достижимую глубину превращения сырья в термических процессах. [12]

Начало образования продуктов уплотнения зависит от состава исходного сырья и жесткости режима висбрекинга. Содержание в нефти неорганических соединений напрямую влияет на скорость отложения кокса, так как их кристаллы, высаживаясь на стенках труб играют роль центров активного

коксообразования, поэтому необходимо добиваться стабильного и глубокого обессоливания нефти. [1]

Загрязнение рабочих поверхностей оборудования предприятий нефтедобычи и нефтепереработки — серьезная проблема, обуславливающая снижение эффективности технологических процессов. Применяемые в настоящее время методы предупреждения образования отложений позволяют увеличить межремонтный пробег эксплуатации оборудования, но не исключают полностью образование отложений. Поэтому на всех предприятиях указанных отраслей обязательно применяются различные физические и химические методы удаления загрязнений. [13]

Процессы "закоксовывания" технологического оборудования являются одним из препятствий широкому распространению традиционного висбрекинга. Коксоотложение, являясь ограничивающим фактором для обеспечения длительного пробега установки, приводит к преждевременным остановкам для чистки оборудования и удаления кокса.

Степень закоксовывания оборудования в процессе висбрекинга и конверсия в значительной степени зависят от температуры крекинга в печи. Для поддержания температуры в оптимальной и допустимой области специалисты установки периодически выводили поочерёдно один из теплообменников на очистку. Особое внимание уделялось работе теплообменника Т-107, поскольку обычно концевые теплообменники Т-107 и Т-106 наиболее подвержены загрязнению.

Наличие отложений на поверхности теплообменного оборудования приводит к следующим негативным последствиям:

1) снижению тепловой производительности, связанному с падением фактических коэффициентов теплопередачи вследствие роста термического сопротивления трубок;

- 2) увеличению гидравлического сопротивления в трубках в результате уменьшения их проходного сечения и роста шероховатости;
- 3) потере топлива и мощности теплообменного оборудования;
- 4) из-за перегрева металла и коррозии под слоем отложений сокращается срок службы металла труб, происходят аварии (свищи, отдулины, разрывы).

В ОАО «Саратовский НПЗ» для решения проблем с коксообразованием, коксоотложением в оборудовании секции «Висбрекинг» используется гидромеханический метод очистки теплообменного оборудования.

Гидромеханическая чистка — это основной метод очистки теплообменных аппаратов, содержащих отложения органического кокса и прочих неорганических веществ в нефтеперерабатывающих, нефтехимических и других отраслях.

Способ заключается гидромеханическом разрушении В твердых отложений на внутренней поверхности труб теплообменных аппаратов методом скалывания вращающейся роликовой конической зубчатой или коронкой специального профиля с последующим удалением отложений потоком движущейся воды. Специальный гибкий вал в оплетке, на конце которого монтируется чистящий инструмент, постепенно продвигается по трубе, скалывает все загрязнения, и сразу же измельчает их. В то же время по валу подается вода под давлением, которая мгновенно выносит отложения из системы.

К недостаткам установки можно отнести:

- необходимость разборки агрегата и демонтажа труб;
- требуемое высокое давление предъявляет высокие требования к охране труда;
- требование наличия воздухо-подготовительной установки;
- малый срок службы коронок зубчатых и насадок при очистке труб от твердых отложений.

В третьей главе рассмотрен предлагаемый метод ультразвуковой очистки. Представлено описание процесса, физические принципы ультразвуковой защиты от отложений, описаны методы создания ультразвуковых колебаний в теплообменном оборудовании. Рассмотрены преимущества ультразвукового метода очистки и основные элементы для его осуществления.

Ультразвуковая очистка — способ очистки поверхности твердых тел, основанный на возбуждении колебаний ультразвуковой частоты.

В основе способа лежит возбуждение ультразвуковых колебаний на поверхности трубок и отложений. В силу различных физико-механических свойств металла трубок и отложений ультразвуковые колебания приводят к появлению усталостных трещин в отложениях и последующему их отделению от металла. [15]

Преимуществами данного способа очистки являются:

- отсутствие остановок оборудования;
- улучшение теплопереноса;
- малая мощность установки (порядка 100 Вт);
- отсутствие сливов воды и использования других сред и материалов;
- предупреждение образования в трубках новых отложений;
- уменьшение расхода теплоносителей и, как следствие, уменьшение гидравлических и тепловых потерь, экономия электроэнергии, потребляемой насосами;
- обеспечение паспортной производительности теплообменного оборудования;
- сокращение объема работ по техническому обслуживанию.

На сегодняшний день очистка с использованием ультразвуковых приборов является наиболее перспективным методом. Ультразвуковые устройства увеличивают эффективность рекуперации энергии, интервалы между циклами очистки (межремонтный пробег установки), сокращают эксплуатационные

расходы, увеличивают производительность и позволяют использовать внутренние резервы вещества.

Существует несколько физических методов, уменьшающих скорость образования отложений. Все они способствуют образованию кристаллов отложений в толще жидкости и препятствуют достижению кристаллами размеров, необходимых для образования осадка. Ультразвуковая технология выделяется в этом ряду тем, что воздействует на образование и оседание отложений несколькими различными способами одновременно.

Во-первых, при озвучивании жидкости ультразвуком достаточной интенсивности, происходит разрушение, раскалывание образующихся в нагреваемой жидкости кристаллов отложений. Под воздействием ультразвука происходит раскалывание кристаллов, их средние размеры уменьшаются с 10 до 1 микрона, увеличивается их количество и общая площадь поверхности. [14] Это приводит к переносу процесса образования отложений с теплообменной поверхности в жидкость.

Во-вторых, ультразвук возбуждает высокочастотные колебания в металлической теплообменной поверхности. Распространяясь по поверхности, ультразвуковые колебания препятствуют формированию на ней коксовых отложений, замедляя осаждение образующихся кристаллов. За счёт различной механической жёсткости металла и слоя отложений изгибные колебания теплообменной поверхности разрушают формирующийся слой отложений.

В-третьих, под воздействием колебаний в толще жидкости образуется множество кавитационных пузырьков. Вокруг них, как центров кристаллизации, непосредственно в воде начинают образоваться кристаллы, образуя мелкодисперсный шлам. Кавитационные пузырьки, пульсируя и схлопываясь вблизи загрязнений, разрушают их.

Основными элементами оборудования для ультразвуковой очистки являются ультразвуковой преобразователь и генератор.

Излучатели соединены кабелем с ультразвуковым генератором и непрерывно получают от генератора электрические импульсы специальной формы с несущей ультразвуковой частотой. Этот электрический сигнал преобразуется магнитострикционным сердечником в механические колебания той же частоты. А поскольку излучатель приварен к защищаемому агрегату и представляет с ним единое целое, ультразвуковые колебания возбуждаются во всей конструкции теплообменника и распространяются как во всей теплообменной поверхности, так и переизлучаются в жидкость от поверхности.

В четвертой главе проводятся технологические расчёты. Приведены тепловые расчёты, составлены тепловые балансы и тепловые потери теплообменных аппаратов Т-100 — Т-107 в базовом и модернизированном вариантах. В результате проведенных расчётов увеличение температуры гудрона от использования ультразвуковых приборов на входе в печь висбрекинга Π -104 составило 3,165 °C.

В пятой главе представлен экономический расчёт. В рамках экономического обоснования мероприятий по модернизации рассчитано, что интегральный экономический эффект от модернизации за 5 лет составил 30,001 млн.руб. Индекс доходности составил 10,69 руб./руб. Рассчитан срок окупаемости дополнительных капиталовложений, который будет равен 0,428 года.

Выводы:

Таким образом, предлагаемая технология ультразвуковой (кавитационной) очистки позволит реализовать технологию глубокого висбрекинга гудрона с повышенным КПД использования тепла крекинг-остатка, избежав проблем связанных с закоксовыванием аппаратуры и сокращением продолжительности непрерывного пробега установки. Капитальные вложения, связанные с приобретением, монтажом и наладкой устройств окупаются в течение нескольких месяцев их работы.

Значительный экономический эффект от их внедрения позволяет высоко оценить перспективу дальнейшего применения ультразвуковых устройств.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Агабеков, В.Е. Нефть и газ: технологии и продукты переработки / В.Е.Агабеков, В.К.Косяков. Ростов н/Д: Феникс, 2014. 458c
- 2 Суриндер, П. Справочник по переработке нефти / Перевод с английского.
- M.: OOO «Премиум Инжиниринг», 2012. 776c.
- 3 Капустин, В.М. Технология переработки нефти/ В.М.Капустин, А.А.Гуреев.-В 2ч. Часть вторая. Деструктивные процессы.-М.: КолосС,2007. -334с.
- 4 Агабеков, В.Ю. Нефть и газ. Добыча, комплексная переработка и использование. Минск: БГТУ, 2003.- 376 с.
- 5 Мановян, А.К. Технология первичной переработки нефти и природного газа / А.К. Мановян. 2-е изд.-М.: Химия, 2001. 568 с.
- 6 Спейшер, В.А. Повышение эффективности использования газа и мазута в энергетических установках/ В.А. Спейшер, А.Д.Горбаненко. -М.,1991.-240с.
- 7 Сафин, З.И. Комплексная оценка нефтеперерабатывающих заводов и заводов по переработке тяжелых нефтей и природных битумов / З.И. Сафин, А.Ф. Кемалов, Р.А. Кемалов, Н.А. Терентьева // Вестник Казан. технол. ун-та, 2011.-191с.
- 8 Сюняев, З.И. Физико-химическая механика нефтяных дисперсных систем / З.И. Сюняев. М.: МИНХиГП им. И.М.Губкина, 1981. 92 с.
- 9 Доминичи, В. Процесс висбрекинга/ В. Доминичи, Г. Сияли. Химия и технология топлив и масел,1999. -224с.
- 10 Пивоварова, Н.А. Висбрекинг нефтяного сырья / Н.А. Пивоварова, Б.П.Туманян, В.И. Белинский. М.: Изд-во «Техника» ООО «ТУМА ГРУПП», 2002. 64 с.
- 11 Кузора, И.Е. Подготовка сырья для установки замедленного коксования / И.Е. Кузора, А.И. Юншнов. В.А. Кривых, С.Г. Кращук // Химия и технология топлив и масел, 2000. 123с.

- 12 Голованчиков, А.Б. Перспективные устройства для очистки теплообменных поверхностей: учеб. пособие/А.Б.Голованчиков, С.Б.Воротнева, ВолгГТУ. Волгоград, 2014. 64с.
- 13 Мальцев А.Г. Химическая очистка оборудования нефтеперерабатывающих и нефтехимических производств. М.: ЦНИИТЭнефтехим, 1976. 74с.
- 14 Хмелев, В.Н. Применение ультразвука высокой интенсивности в промышленности. Алт. гос. техн. ун-т, БТИ. Бийск: Изд-во Алт. гос. тех. ун-та, 2010. 203с.
- 15 Артемьев, В.В. Ультразвуковые виброударные процессы/ В.В. Артемьев, В.В. Клубович, В.Н. Сакевич. Мн.: БНТУ, 2004. 258 с.