МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической физики и вычислительной математики

«Неклассические решения интегрируемых уравнений математической физики»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студентки <u>2</u> курса <u>217</u> группы направления 01.04.02 – Прикладная математика и информатика

код и наименование направления(специальности)

механико-математического факультета

наименование факультета, института, колледжа

Кирьяновой Татьяны Александровны

фамилия, имя, отчество

Преподаватель

к. ф.-м. н., доцент М. Ю. Игнатьев должность, уч.степень, уч.звание дата, подпись инициалы, фамилия

Зав. кафедрой

д.ф.-м.н., профессор В. А. Юрко

должность, уч.степень, уч.звание дата, подпись инициалы, фамилия

Введение. За последние два десятилетия множество работ были посвящены задаче Коши для нелинейного волнового уравнения Камасса – Холма, которое имеет вид

$$u_t - u_{xxt} = 2u_x u_{xx} - 3u u_x + u u_{xxx} \ u(x, t_0) = u_0; \tag{1}$$

Одним из важных свойств уравнения Камасса-Холма интегрируемость в том смысле, что существует связанная пара Лакса. При использовании метода обратной задачи рассеяния существенна интегрируемость (1). В первом разделе рассматриваем подход, обеспечивающий алгоритм обратной задачи рассеяния. Существуют решения уравнения Камасса-Холма, которые имеют разрыв, т.е. возникают особенности за конечное время, но норма в H^1 конечна. В этом случае возникают сложности продолжения решения после разрыва волны. Мы рассмотрим так называемые "мультипиконовые решения. Это решения вида

$$u(x,t) = \sum_{n=1}^{N} p_n(t)e^{-|x-q_n(t)|},$$
(2)

где функции в правой части удовлетворяют следующей нелинейной системе обыкновенных дифференциальных уравнений:

$$\dot{q_n} = \sum_{k=1}^{N} p_k e^{-|q_n - q_k|}, \quad \dot{p_n} = \sum_{k=1}^{N} p_n p_k \, sgn(q_n - q_k) e^{-|q_n - q_k|}.$$
 (3)

Целью магистерской работы является построение решений уравнения Камасса-Холма. Для этого были решены следующие задачи:

- 1. рассмотрен метод обратной задачи для уравнения (1);
- 2. рассмотрены глобальные консервативные мультипиконовые решения;
- 3. построено двупиконовое решение для уравнения (1)

Работа состоит из введения, двух глав, заключения, списка используемых источников и приложения.

Основная часть. **Первая глава** является теоретической и состоит из пяти разделов. **В первом разделе** рассматривается метод обратной задачи для (1.) Перепишем (1) в виде

$$m_t + 2u_x + um_x + 2mu_x = 0, t > 0, x \in \mathbb{R},$$
 (4)

где $m=u-u_{xx}$ - переменная импульса. В (4), u(t,x) представляет горизонтальную составляющую скорости потока , или, эквивалентно, свободную поверхность воды. Изоспектральная задача для (4)в $L^2(\mathbb{R})$ выглядит следующим образом:

$$\psi_{xx} = \frac{1}{4}\psi + \lambda(m+1)\psi \tag{5}$$

с непрерывным сектором $\left(\infty,-\frac{1}{4}\right]$ и конечным числом собственных значе-

ний на интервале $\left(-\frac{1}{4},0\right)$. Верно

$$\psi(t, x, k) = \begin{cases} e^{ikx} + \Re(t, k)e^{ikx}, & x \to \infty; \\ \Im(t, k)e^{ikx}, & x \to -\infty, \end{cases}$$
 (6)

где \mathfrak{F} –коэффициент прохождения, \mathfrak{R} – коэффициент отражения.

$$\mathfrak{F}(t,k) = \mathfrak{F}(0,k),$$

$$\Re(t,k) = \Re(0,k) \exp\left(\frac{ik}{\lambda}t\right), t \ge 0$$

эволюция $\mathfrak{F}(t,k)$ и $\mathfrak{F}(t,k)$. Данными рассеяния являются коэффициенты $\{\mathfrak{R}:k\geq 0\}$, дискретный спектр и нормализующие константы $c_n(t),n=0$

1...,N, связанные с дискретным спектром (набором собственных значений) $\{\lambda_1,...,\lambda_N\}$. Связанные состояния являются константами движения. (5) перепишем в виде

$$-\frac{d^2\phi}{dy^2} + Q\phi = \mu\phi. \tag{7}$$

Где

$$Q(y) = \frac{1}{4q(y)} + \frac{q_{yy}(y)}{4q(y)} - \frac{3q_y^2(y)}{16q^2(y)} - \frac{1}{4}$$
 (8)

c

$$q(y) = m(x) +$$

и спектральным параметром $\mu=-\frac{1}{4}-\lambda$. В любой момент $t\geq 0$ мы можем определить данные рассеяния для Q(t,y) из $Q_0(y)=Q(0,y)$...Условия на m_0 гарантируют, что $Q_0\in S(\mathbb{R})$ и что применим подход Марченко, и нахождение Q(t,y) равносильно решению линейного интегрального уравнения, определяемого данными рассеяния для $Q_0(y)$ из знания $m_0(x)$. Единственным сложным моментом этого подхода является восстановление m(t,x) из Q(t,y). Учитывая Q это требует от нас решения нелинейного дифференциального уравнения второго порядка (8) для нахождения q, а затем выполнения преобразования координат $y\mapsto x$. Уравнение (8) является уравнением Пинни [14], но решение для q, данное Q, полученное в [14], не удобно для наших целей (этот подход использовался в [3] и приводит к ненужным осложнениям).

Ниже рассмотрим альтернативный подход, который дает более прямое и менее сложное решение. Для удобства в формулировке опускаем зависимость от времени.

Теорема 0.1. Пусть f(y) - функция Йоста при $y = \infty$ для уравнения на собственные значения

$$\phi_{yy} = (Q + \frac{1}{4})\phi,\tag{9}$$

т. е. f-единственное решение (9) с асимптотикой

$$f(y) = e^{-y/2} + o(1) u; f'(y) = -\frac{1}{2}e^{-y/2} + o(1) npu y \to \infty.$$

Eсли $H:\mathbb{R} o\mathbb{R}$ - это биекция, заданная $H(t)=\int\limits_{-\infty}^{y}rac{d\xi}{f^{2}(\xi)}$, тогда

$$m(x) + 1 = e^{2x} f^4(H^{-1}(e^x)), x \in \mathbb{R}.$$
 (10)

Результат теоремы сводит восстановление m(x) по Q(y) к решению линейного интегрального уравнения

$$f(y) = e^{-y/2} + \int_{y}^{\infty} \left(e^{(\xi - y)/2} - e^{(y - \xi)/2} \right) Q(\xi) f(\xi) d\xi, y \in \mathbb{R}$$

и вычисление обратной функции $H(y)=\int\limits_{-\infty}^{y}\frac{d\xi}{f^2(\xi)}$. Во втором разделе рассмотрим глобальные консервативные мультипиконовые решения.

Определение 0.1. Глобальное консервативное решение (u, μ) уравнения Камасса-Холма является мультипиконовым решением, если для некоторых $t_0 \in \mathbb{R}$ мера $\mu(\cdot, t_0)$ абсолютно непрерывна и верно

$$u(x,t_0) = \sum_{n=1}^{N} p_n(t_0)e^{-|x-q_n(t_0)|}, x \in \mathbb{R},$$
(11)

для некоторых $N \in \mathbb{N}$ и $p_n(t_0), q_n(t_0) \in \mathbb{R}$ для $n=1,\ldots,N$.

Лемма 0.1. Предположим, что характеристики не совпадают в момент времени $t \in \mathbb{R}$. Тогда

$$\begin{pmatrix} p_{1}(t) \\ p_{2}(t) \\ p_{3}(t) \\ \vdots \\ p_{N}(t) \end{pmatrix} = \begin{pmatrix} a_{1}(t) & b_{1}(t) & 0 & \dots & 0 \\ b_{1}(t) & a_{2}(t) & b_{2}(t) & \dots & 0 \\ 0 & b_{2}(t) & a_{3}(t) & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N}(t) \end{pmatrix} \begin{pmatrix} u(q_{1}(t), t) \\ u(q_{2}(t), t) \\ u(q_{3}(t), t) \\ \vdots \\ u(q_{N}(t), t) \end{pmatrix}, \quad (12)$$

где
$$a_n(t)=rac{1}{2}rac{sh(q_{n+1}(t)-q_{n-1}(t))}{sh(q_{n+1}(t)-q_n(t))sh(q_n(t)-q_{n-1}(t))},\ n=1,\dots,N,$$
 $b_n=rac{1}{2}rac{-1}{sh(q_{n+1}(t)-q_n(t))},\ n=1,\dots,N-1.$ Для простоты считаем $q_0(t)=-\infty$ и $q_{N+1}(t)=+\infty.$

Лемма 0.2. Функция (29) будет слабым решением уравнения Каммса-Холма, если p_n и q_n удовлетворяют системе обыкновенных дифференциальных уравнения (3).

Лемма 0.3. Предположим, что $q_n(t^{\times})=q_{n+1}(t^{\times})$ для некоторых $n=1,\ldots,N-1$. Тогда

$$p_n(t^{\times}) + p_{n+1}(t^{\times}) = \lim_{t \to t^{\times}} p_n(t) + p_{n+1}(t)$$
(13)

и масса $\mu(\cdot,t^{\times})$ в точке столкновения задается

$$\mu(\{q_n(t^*)\}, t^*) = \lim_{t \to t^*} 4p_n(t)p_{n+1}(t)(q_n(t) - q_{n+1}(t)). \tag{14}$$

Утверждение Пусть мультипиконновые начальные данные \widetilde{u} задаются $\widetilde{u}=\sum_{i=1}^n p_i e^{-|x-\xi_i|}$ и $\widetilde{y}_i=\xi_i,\widetilde{u}_i=\widetilde{u}(\xi_i),\widetilde{H}_i=\int\limits_{-\infty}^{\xi_i}\widetilde{u}^2+\widetilde{u}_x^2)dx$ \forall $i=1,\ldots,n.$ Тогда

существует глобальное решение (y_i,u_i,H_i) задачи

$$\begin{cases} \frac{dy_i}{dt} = u_i, \\ \frac{du_i}{dt} = Q_i \\ \frac{dH_i}{dt} = u_i^3 - 2P_i u_i. \end{cases}$$
$$P_i = \sum_{i=0}^{n} P_{ij},$$

где

$$P_{i}j = \begin{cases} e^{(y_{1}=y_{i})}\frac{u_{1}^{2}}{4}, & \text{для}j = 0; \\ \frac{e^{-\kappa_{ij}y_{i}}e^{\kappa_{ij}\widetilde{y}_{j}}}{8\cosh(\delta y_{j})}[2\delta H_{j}\cosh^{2}(\delta y_{j}) + \\ +8\kappa_{ij}\widetilde{u}_{j}\delta u_{j}\sinh^{2}(\delta y_{j}) + 4\widetilde{u}_{j}^{2}\tanh^{2}(\delta y_{j})] & \text{для}j = 1,\dots,n-1, \\ e^{(y_{i}-y_{n})}\frac{u_{n}^{2}}{4}, & \text{для}j = n; \end{cases}$$

и
$$Q_i = -\sum\limits_{j=0}^n \kappa_{ij} P_{ij}$$
, где

$$\kappa_{ij} = \left\{ egin{array}{ll} -1, & ext{если} j \geq i, \ 1, & ext{в других случаях.} \end{array}
ight.$$

с начальными данными $(\widetilde{y}_i,\widetilde{u}_i,\widetilde{H})$. Для каждого времени t определяем u(t,x) как решение задачи Дирака $u-u_{xx}=0$ с граничными условиями $u(t,y_i(t))=u_i(t,y_{i-1}(t))=u_{i+1}(t)$ для интервала $[y_i(t),y_{i+1}(t)]$. Тогдаu - мультипиконновое решение уравнения Камасса-Холма.

В третьем разделе рассматривается обобщенная спектральная задача. Для определенности будем считать, что $supp(|\omega|+v)=\{x_1,\ldots,x_N\},\, |\omega_n|+v_n>0$ для $n=1,\ldots,N$. В этом разделе будем рассматривать спектральную задачу

$$-f''(x) + \frac{1}{4}f(x) = z\omega(x)f(x) + z^2v(x)f(x), \ x \in \mathbb{R},$$
 (15)

с комплексным спектральным параметром $z \in \mathbb{C}$. Поскольку ω и v - это меры, то данное уравнение следует понимать в смысле обобщенных функций (если f непрерывна, то в правой части будет стоять мера).

Предположение 0.1. Каждое собственное значение λ спектральной задачи (15) вещественно. При этом

$$-\dot{W}(\lambda) = c_{\lambda} \gamma_{\lambda}^{2} \neq 0, \tag{16}$$

где точка означает дифференцирование по спектральному параметру.

Предположение 0.2. Первые две формулы следов спектральной задачи (15) задают

$$\sum_{\lambda \in \sigma} \frac{1}{\lambda} = \int_{\mathbb{R}} d\omega \quad \sum_{\lambda \in \sigma} = \frac{1}{\lambda^2} = \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-|x-s|} d\omega(s) d\omega(x) + 2 \int_{\mathbb{R}} dv.$$
 (17)

В четвертом разделе рассматривается обобщенная спектральная задача. Вводится рациональная функция Вейля–Титчмарша M на $\mathbb{C} \setminus \mathbb{R}$, связанную со спектральной задачей (15), через

$$M(z)W(z) = \frac{1}{2}e^{\frac{x}{2}}\phi_{-}(z,x) - e^{\frac{x}{2}}\phi'_{-}(z,x), \quad z \in \mathbb{C} \setminus \mathbb{R}.$$
 (18)

для $x \to +\infty$ (обратим внимание, что вронскиан справа является константой).

Лемма 0.4. Функция Вейля-Тичмарша допускает следующее разложение на простые дроби(следующее разложение в ряд)

$$\frac{M(z)}{z} = \sum_{\lambda \in \sigma} \frac{\gamma_{\lambda}^2}{\lambda(\lambda - z)}, \ z \in \mathbb{C} \setminus \mathbb{R}, \tag{19}$$

Лемма 0.5. Функция Вейля-Титчмарша M допускает следующее конечное разложение на простые дроби:

$$M(z) = 1 + \frac{1}{-l_n + \frac{1}{m_N(z) + \frac{1}{\cdots + \frac{1}{m_1(z) - \frac{1}{l_0}}}}} \quad z \in \mathbb{C} \setminus \mathbb{R}.$$
 (20)

Теперь мы можем решить обратную спектральную задачу следующим образом[33, §3.4].

Теорема 0.2. Пусть задано σ -конечное подмножество \mathbb{R} , и для каждого $\lambda \in \sigma$ пусть $\gamma_{\lambda}^2 \in \mathbb{R}$, такая что $\lambda \gamma_l a^2 > 0$. Тогда существуют единственные меры ω и v вида (??), такие что заданы спектр σ и нормирующие постоянные γ_{λ}^2 для $\lambda \in \sigma$.

Следствие 0.1. Пусть ω и v – меры, которые определены в (??), σ – ассоциированный спектр и для каждого $\lambda \in \sigma \gamma_{\lambda}^2$ - соответствующие нормирующие постоянные.

і) v=0 тогда и только тогда, когда главные миноры $\Delta_{1,k}, k=1,\ldots,|\sigma|,$ матрица моментов

$$\begin{pmatrix}
s_1 & s_2 & \dots & s_{|\sigma|} \\
s_2 & s_3 & \dots & s_{|\sigma|+1} \\
\vdots & \vdots & \dots & \vdots \\
s_{|\sigma|} & s_{\sigma|+1} & \dots & s_{2|\sigma|-1}
\end{pmatrix}, \quad \varepsilon \partial e \quad s_k = \sum_{\lambda \in \sigma} \frac{\lambda^k}{\lambda \gamma_\lambda^2}, \quad k \in \mathbb{N}, \tag{21}$$

не равны нулю, и где σ - число собственных значений.

іі) Если η_+ - количество ненулевых элементов в v_1, \ldots, v_N и κ_0 - количество нулевых элементов в $\Delta_{1,1}, \ldots, \Delta_{1,|\sigma|}$, тогда верны соотношение

$$|\sigma| - N - \eta_+ = \kappa_0. \tag{22}$$

ііі) В случае v=0, мера ω неотрицательна(неположительна) тогда и только тогда, когда все миноры $\Delta_{1,k}$ положительны(знаки чередуются, начиная с отрицательного, т.е. $s_1<0$.

В пятом разделе показывается, что наша обобщенная спектральная задача действительно является изоспектральной задачей для консервативного уравнения Камасса—Холма в случае мультипикона.

Теорема 0.3. Пара u, ν является глобальным консервативном мультипиконновом решением уравнения Камасса-Холма тогда и только тогда, когда задачи

$$-f''(x) + \frac{1}{4}f(x) = z\omega(x,t)f(x) + z^2v(x,t)f(x), x \in \mathbb{R},$$
 (23)

изоспектральны с

$$\gamma_{\lambda}^{2}(t) = e^{-\frac{t-t_{0}}{2\lambda}} \gamma_{\lambda}^{2}(t_{0}), t \in \mathbb{R}, \lambda \in \sigma(t_{0}), \tag{24}$$

Эволюция во времени спектральных величин в теореме дает нам сохранение величины для глобальных консервативных мультипиконновых решений.

Следствие 0.2. Если пара (u, ν) является глобальным консервативным многопиконновым решением уравнения Камасса-Холма, то интегралы

$$\mathcal{I}_1 = \int_{\mathbb{R}} d\omega(x,t) \ \mathcal{I}_2 = \int_{\mathbb{R}} u(x,t)d\omega(x,t) + \int (\mathbb{R}dv(x,t))$$
 (25)

не зависят от времени $t \in \mathbb{R}$.

Вторая глава является практической и состоит из двух разделов. Во втором разделе построено данное решение. В первом разделе описаны глобальные двупиконновые решения уравнения Камасса-Холма, заданы явные формулы для построения решения. Можно записать записать глобальное консервативное решение из двух пиконов (u, ν) уравнения Камасса-Холма с начальными данными, заданными (??). Поэтому рассмотрим следующие два различных случая:

(i). Пиконо-пиконновый случай. Из представления (??) Вронского следует, что $\lambda_1\lambda_2>0$ тогда и только тогда, когда $\omega_1(t_0)\omega_2(t_0)>0$. В этом случае слабое решение является единственным $(x_2(t)>x_1(t)$ для всех t, начиная с $s_1(t)\neq 0)$ и, следовательно, консервативное решение совпадает с классическим и задается

$$u(x,t) = \frac{1}{2} \sum_{n=1}^{2} \omega_n(t) e^{-|x-x_n(t)|}, x, t \in \mathbb{R},$$
(26)

(ii). Пиконо-антипиконновый случай. Теперь пусть $\omega_1(t_0)$ и $\omega_2(t_0)$ будут различного знака, то есть $\omega_1(t_0)\omega_2(t_0)<0$. В этом случае существует ровно один момент времени $s_1(t^\times)=0$, который задается следующим образом

$$t^{\times} = t_0 + \frac{2\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \log \left(-\frac{\gamma_1^2(t_0)}{\gamma_2^2(t_0)} \right). \tag{27}$$

С учетом вышеизложенных рассуждение глобальное консервативное решение задается

$$u(x,t) = \begin{cases} \frac{1}{2} \sum_{n=1}^{2} \omega_n(t) e^{-|x-x_n(t)|}, & t \neq t^{\times}, \\ \frac{1}{2} \omega_1(t) e^{-|x-x_1(t)|} & t = t^{\times}. \end{cases}$$
 (28)

Во втором разделе практической главы построены пиконо-пиконовый случай (рисунок 1) и пиконо-антипиконовый случай (рисунок 2) в различные моменты времени.

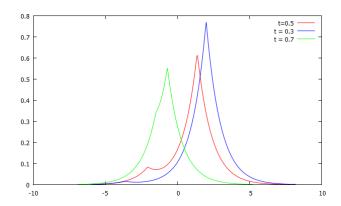


Рис. 1: Пиконо-пиконновый случай.

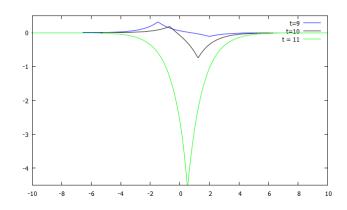


Рис. 2: Пиконо-антипиконовый случай.

Заключение. В данной работе исследовались решения уравнения Камасса - Холма. Был рассмотрен метод обратной задачи для данного уравнения. Также были рассмотрены мультипиконовые решения вида

$$u(x,t) = \sum_{n=1}^{N} p_n(t)e^{-|x-q_n(t)|},$$
(29)

В практической части был исследован частный случай - двупиконовое решение. Реализован код для построения данного решения. Также были построены графики, позволяющие отследить взаимодействие пиконов в различные моменты времени.