Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра физики полупроводников

Квантовомеханическое моделирование переноса заряда в одномерной цепочке химически связанных атомов на примере GaAs

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента 2 курса 202 группы

направления 11.04.04 «Электроника и наноэлектроника»

факультета нано- и биомедицинских технологий

Калмыкова Антона Валерьевича

Научный руководитель		
ОНИ НС и БС СГУ, к.фм.н.		А.А. Клецов
должность, ученая степень, ученое звание	подпись, дата	инициалы, фамилия
Консультант		
д.фм.н., профессор		А.И. Михайлов
должность, ученая степень, ученое звание	подпись, дата	инициалы, фамилия
Зав. кафедрой		
д.фм.н., профессор		А.И. Михайлов
должность, ученая степень, ученое звание	подпись, дата	инициалы, фамилия

Саратов 2018

введение

Общая характеристика работы.

Актуальность темы. Подход Ландауэра-Буттикера к транспортным явлениям в мезоскопических проводящих системах состоит в том, что процесс прохождения электронов через такие системы рассматривается как процесс рассеяния. Мезоскопическая система предполагается соединенной с макроскопическими контактами, которые выполняют роль электронных резервуаров и служат источником равновесных частиц. После рассеяния электроны возвращаются в тот же самый или уходят в другой контакт. Таким образом, задача вычисления таких макроскопических характеристик образца как, например, электропроводность или теплопроводность, сводится к решению квантовой задачи рассеяния.

Этот подход является существенно одночастичным. Поэтому, мы пренебрегаем взаимодействием электронов с электронами (и другими квазичастицами) и используем уравнение Шредингера для бесспиновых частиц, в качестве основного уравнения в тех случаях, когда требуется определить квантово-механические амплитуды рассеяния. В рамках рассматриваемого метода, взаимодействие может быть добавлено в приближении среднего поля.

Цель и задачи магистерской работы. Целью данной работы является исследование изменения электронной структуры (в частности ширины запрещенной зоны) в полупроводниковом нанокластере типа A3B5 с целью расчета ее проводимости, то есть наноскопический анализ электронной проводимости полупроводниковой структуры A3B5, а одним из способов проведения данного анализа является формализм Ландауэра-Буттикера.

В данной работе рассмотрены такие структуры, как GaAs и Cu-GaAs-Cu (с медными контактами).

Положение, выносимое на защиту. Теоретически изучено влияние внешнего напряжения на проводимость нано-кластеров типа A3B5. Рассмотрено изменение ширины квази-запрещенной зоны нано-кластера при увеличении числа атомов в нем.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении описана актуальность темы исследования, а также сформулированы цель и задачи исследования. Описано, что именно подход Ландауэра-Буттикера является для нас наиболее значимым.

В **разделе 1** произведен анализ литературы, посвященный способу анализа электронной проводимости, а именно формализм Ландауэра-Буттикера. Описаны и подробно изучены формулы Ландауэра для проводимости и для тока при ненулевом напряжении.

Далее описывается подробно теория электронного пропагатора, так как проводя анализ были использованы программные пакеты, основывающиеся на данной теории.

Изучен метод Хартри-Фока, так как именно он широко используется в квантовой химии, в частности, для проведения численного моделирования конфигурации некоторых молекул, в теории атома для расчетов свойств атомных конфигураций. Метод состоит из нескольких стадий, о которых все рассказывается.

Рассмотрена теория граничных орбиталей, понимание которой важно для построения зонной диаграммы нанокластера.

Рассмотрен квантово-химический комплекс Gaussian, а именно его способности, актуальность и применение.

В разделе 2 описывается экспериментальная часть работы, заключающаяся в моделировании и оптимизации нанокластеров типа A3B3, а именно GaAs и GaAs с медными контактами по краям. Этот раздел разбит на 2 части:

1) оптимизация и моделирование;

2) анализ полученных результатов.

Первая часть работы заключается в оптимизации геометрии кластера с помощью квантово-химической программы Gaussian. Этот программный пакет предназначен для расчета структуры и свойств молекулярных систем, как в газофазном, так и конденсированном состоянии. Программа решает уравнение

Шредингера и находит оптимальное положение каждого атома решетки, которому соответствует минимальное значение потенциальной энергии. Работали с таким кластером, как GaAsCu.

Для оптимизации пользовались методом Хртри-Фока, и для описания волновой функции молекулы использовался базисный набор 6-311. Визуализация производилась с помощью программы GaussView.

На рисунках 1 (а) и 1 (б) изображен кластер GaAs с медными (Си) контактами состоящий из 12 атомов до и после оптимизации.

Рисунок 1 (а) – До оптимизации.

Рисунок 1 (б) – После оптимизации.

Сравнивая 2 рисунка видно, что расстояния между атомами и структура самого кластера сильно изменилась. Заметно, что 2 атома Ga

отделены от других атомов, которые связанны между собой. Оказывается, что связь между этими атомами и основной массой кластера все же есть, но она слаба настолько, что программа просто ее не изображает.

На рисунках 2 (а) и 2 (б) также изображен кластер GaAs с медными (Cu) контактами, состоящий из 20 атомов. Так как моделирование производилось в программе, то эта структура есть соединение двух кластеров арсенида галлия по 9 атомов, соединенные между собой. Видно, что все связи после оптимизации не нарушены, но структура сильно изменилась.

Рисунок 2 (а) – До оптимизации.

Рисунок 2 (б) – После оптимизации.

На рисунках 3(а) и 3(б) также изображен кластер GaAs с медными (Cu) контактами, состоящий из 20 атомов. Так как моделирование производилось на

рисунках 3 (а) и 3 (б) изображен кластер с зафиксированными в пространстве атомами меди (Cu), состоящий из 60 атомов.

Рисунок 3 (б) – После оптимизации.

Из этих рисунков видно, что все атомы также стали ближе к центральной оси, соединяющей атомы меди (Cu). Все связи также не нарушены. Наблюдается симметричная геометрия в виде цепочки с явно оформленными шестиугольными ячейками.

На рисунках 4 (а) и 4 (б) изображен кластер с зафиксированными в пространстве атомами меди (Си), состоящий из 91 атома.

Рисунок 4 (a) – До оптимизации.

Рисунок 4 (б) – После оптимизации.

После оптимизации немного уменьшились расстояния между атомами, и были разорваны связи между атомами Ga, находящихся по бокам кластера. Структура осталась той же.

Анализ полученных результатов

На этом этапе работы была задача: построить зонную диаграмму по полученным результатам кластеров состоящих из 12, 20, 60 и 91 атома.

По полученным результатам была построена зависимость напряжения от энергии для двух кластеров. Эти графики можно считать зонной диаграммой кластера при изменении напряжения (рисунок 5 – кластер, состоящий из 12 атомов и рисунок 6 – кластер, состоящий из 20 атомов).

Рисунок 5 – Зонная диаграмма кластера (12 атомов).

Рисунок 6 – Зонная диаграмма кластера (20 атомов).

Сравнивая 2 графика (кластер из 12 атомов и кластер из 20 атомов), можно заметить, что при увеличении атомов нанокластера плотность уровней в валентной зоне и зоне проводимости увеличивается. Также видно, что ширина запрещенной зоны с увеличением атомов нанокластера тоже изменилась.

Представлены зависимости тока от напряжения для двух кластеров (рисунок 7 – кластер, состоящий из 12 атомов и рисунок 8 – кластер, состоящий из 20 атомов).

Рисунок 7 – ВАХ кластера, состоящего из 12 атомов.

Рисунок 8 – ВАХ кластера, состоящего из 20 атомов.

Сравнивая 2 характеристики, можно заметить, что с увеличением количества атомов нанокластера, ток только увеличивается. Графики примерно похожи, но ток увеличен.

Пока уровень Ферми не приблизится к НОМО, ток небольшой. При пересечении НОМО, ток заметно растет, поскольку получается возможность перехода электронов с НОМО на уровни меди.

По полученным результатам были построены зонные диаграммы двух кластеров (рисунок 9 – кластер, состоящий из 60 атомов и рисунок 10 – кластер, состоящий из 91 атома).

Рисунок 9 – Зонная диаграмма кластера (60 атомов).

Рисунок 10 – Зонная диаграмма кластера (90 атом).

Сравнивая 2 графика также можно заметить увеличение плотностей уровнй в валентной зоне и зоне проводимости с увеличением числа атомов

Представлены зависимости тока от напряжения для двух кластеров (рисунок 11 – кластер, состоящий из 60 атомов и рисунок 12 – кластер, состоящий из 91 атома).

Рисунок 11 ВАХ кластера, состоящего из 60 атомов.

Рисунок 12 – ВАХ кластера, состоящего из 91 атома.

Сравнивая 2 характеристики, можно заметить, что с увеличением количества атомов нанокластера, ток только увеличивается. Графики примерно похожи, но ток увеличен.

ЗАКЛЮЧЕНИЕ

В результате анализа литературы были изучены подходы для наноскопического анализа электронной проводимости полупроводниковой

структуры F3B5, а именно подход Ландауэра-Буттикера, а также метод Хартри-Фока.

Проделав работу, были получены следующие результаты:

1. Был рассмотрен один из способов проведения наноскопического анализа проводимости и тока через наноразмерную структуру, а именно формализм Ландауэра-Буттикера для проводимости тока.

2. Были представлены результаты по моделированию и исследованию свойств кристалла GaAs с медными (Cu) контактами. Модельный эксперимент проводился с помощью квантово-химической программы Gaussian 09W, которая использовала теорию Хартри-Фока и теорию электронного пропагатора. Визуализация структур была выполнена с помощью программы GaussView.

3. Были рассчитаны и изображены зонные структуры исследуемых нанокластеров.

4. Построена зависимость тока от напряжения, из которых видно, что с увеличением атомов нанокластера ток растет.

5. Получен опыт работы с квантово-химическим комплексом Gaussian.