Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

> Кафедра динамического моделирования и биомедицинской инженерии

Исследование полифенольных соединений, полученных из вытяжек кукуруз линии Пурпурная Саратовская и сорта Радуга, методом спектрального анализа

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента <u>2</u> курса <u>206</u> группы
направления 04.04.12 «Биотехнические системы и технологии »
факультета нано- и биомедицинских технологий

Лысенко Ильи Сергеевича

Научный руководитель Доцент, к. ф.-м. н. Дата, подпись

Заведующий кафедрой Доцент, д. ф.-м. н. Е.П. Селезнев

дата, подпись

Введение

Терапия бактериальных, вирусных и онкологических заболеваний является актуальным направлением исследований для медицины. Распространенность таких заболеваний определяет постоянное внимание к поиску новых биологически активных веществ с ингибирующим действием на эти заболевания. Перспективную группу в этом отношении представляют собой растительные флавоноиды.

Это обширная группа полифенольных соединений. Флавоноиды существуют в растениях преимущественно в связанной с молекулой сахаров форме (гликозиды). Разные органы и ткани растений отличаются не только по количеству, но и по качественному составу флавоноидов. Для определения их состава используются разнообразные химические и спектральные методы анализа.

Актуальность и цель

Первые сведения о флавоноидах, полученных из экстрактов кукурузы, были связаны с возможностью их использования как пищевых красителей на В дальнейших основе содержащихся них красных пигментов. исследованиях сообщается о перспективе применения этих флавоноидов в медицинских целях, а именно установлено, что в сырье кукурузы обыкновенной содержится целый комплекс биологически активных веществ, что может быть перспективным для разработки новых лекарственных средств. Установлено, что при использовании в качестве экстрагента 95% этилового спирта, активность экстракта существенно повышается. Это показано в экспериментах *in vivo* на животных с превитыми опухолями и *in* vitro – на клеточных культурах опухолей человека и животных [1-6].

Таким образом наличие данного растительного материала привело к необходимости определения возможностей его использования для практических целей.

Во всех вышеуказанных исследованиях обсуждается терапевтическое влияние общего набора флавоноидов, полученных в результате спиртовой либо водной экстракции из образцов различных видов растений, на подавление бактериального и опухолевого роста клеток. Однако детального анализа исследуемых флавоноидсодержащих растительных экстрактов до сих пор не проводилось.

Целью настоящего исследования являлось выявление и идентификация веществ, входящих в состав флавоноидов из экстрактов кукурузы линии Пурпурная Саратовская, полученных генетиками СГУ, и проведение сравнительного анализа на присутствие в них аналогичных соединений в вытяжках из кукурузы сорта Радуга, не содержащий пигмента.

Теоретическая основа исследования

В качестве объектов исследований служило сырье растений гаплоидной, диплоидной и тетраплоидной кукурузы линии Пурпурная Саратовская и кукурузы сорта Радуга, предоставленных кафедрой генетики СГУ им. Чернышевского. (Водные и спиртовые вытяжки из растительного сырья готовились так же на кафедре генетике. Спектральные анализы спектрофотометрическим проводились методоми рентгеновской, инфракрасной- и ультрафиолетовой-спектроскопии.

ИК-спектральный анализ проведен на спектрофотометре Infralum FT-801. предназначен для регистрации спектров поглощения твердых, жидких и газообразных веществ в ближней и средней ИК области с их последующей идентификацией.

Исходный материал для анализа готовился способом прессования таблеток с KBr. Анализ в УФ области проводили на спектрофотометре Shimadzu UV-1700 и LEKI SS2109UV.

Для определения элементного состава вытяжек в эксперименте использовался рентгеновский спектрофлуориметр — спектроскан MAKC–GV. Спектрометр МАКС-GV относится к классу рентгеновских флуоресцентных спектрометров и предназначен для измерения интенсивностей рентгеноспектральных линий химических элементов.

Идентификация состава полифенольных соединений из вытяжек кукурузы линии Пурпурная Саратовская и кукурузы сорта Радуга методом спектроскопии

Первоначально был проведен ИК-спектральный анализ спиртовых и водных вытяжек линии ПС результаты которого представлены на рисунке 1. Основные полосы поглощения спектров в обоих случаях экстракции принадлежат к карбоновым кислотам и их эфирам (1719 см-1 и 1284 см-1). Также присутствуют аминокислоты (1601 см⁻¹) и сахара (1066-1070 см⁻¹) . Наблюдаемое различие в спектрах водных (кривая 1) и спиртовых вытяжек (кривая 2) из кукурузы линии Пурпурная Саратовская лишь в том, что обнаруженных соединений, в спиртовых экстрактах значительно больше, чем в водных.

Известно, что карбоновые кислоты, входящие в состав пигментов растений, могут существовать как в форме алифатических соединений, так и ароматических. В нашем случае для антоциановой кукурузы основными группами таких фенольных соединений могут быть флованоидные и изофлавоноидные химические формы соединений. Их называют биологическими модификаторами реакций из-за их способности изменять реакцию организма на аллергены, вирусы и канцерогены. Об этом говорят их противовоспалительные, антивирусные и антиканцерогенные свойства.

Для сравнения проведен аналогичный анализ вытяжек кукурузы сорта Радуга, результаты которого приведены на рисунке 2. Как видно из полученных результатов, полосы поглощения в ИК-спектрах водных (кривая 1) и спиртовых (кривая 2) экстрактов кукурузы этого сорта представлены в основном полосой поглощения С-О полисахаридов (1066,6 см⁻¹). Из сравнения ИК-спектров экстрактов обоих сортов кукурузы (рис. 1 и 2) видно, что в вытяжках из кукурузы сорта Радуга наблюдается отсутствие всех доминирующих полос поглощения, соответствующих аминокислотам, эфирам, карбоновым кислота И ИХ кроме полосы поглощения О, соответствующей полисахаридам.

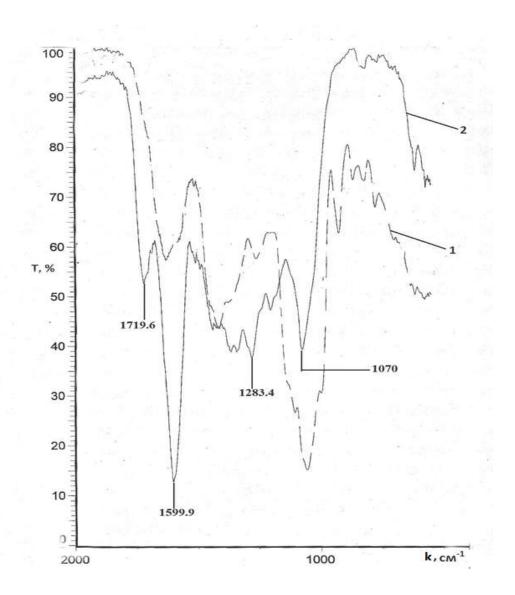


Рис. 1. ИК-спектры вытяжек из кукурузы линии Пурпурная Саратовская: кривая 1 – водная экстракция, кривая 2 – спиртовая экстракция.

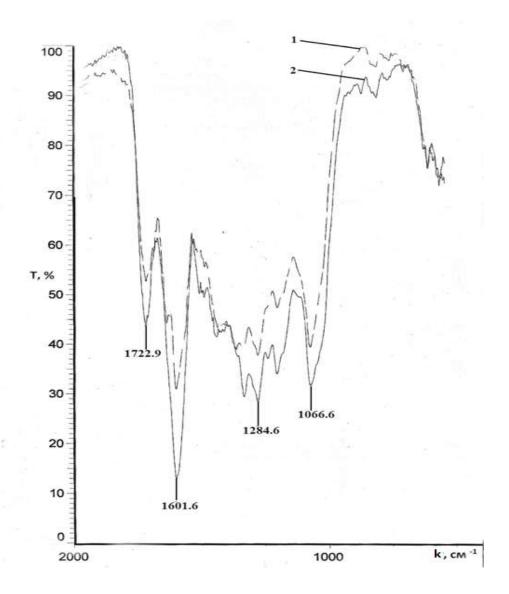


Рис. 2. ИК-спектры вытяжек из кукурузы сорта Радуга: кривая 1 — водная экстракция, кривая 2 — спиртовая экстракция.

Таким образом на основании ИК-спектрального анализа идентифицированы химические соединения, входящие в состав полифенолов, содержащихся в экстрактах исследуемых сортов кукурузы.

Данные о наличии состава флавоноидов, входящих в экстракты, получены другим методом – анализом в УФ области спектра. На рисунке 3 приведены спектры поглощения для вытяжек из кукурузы линии Пурпурная Саратовская. Как видно из полученных результатов, для спиртовых экстрактов (кривая 2) максимумы поглощения наблюдаются в областях 260 нм и 350-370 нм. Для водных экстрактов (кривая 1) имеется максимум

поглощения только в области 260 нм, тогда как в полосе 350-370 нм поглощение отсутствует. Из литературы известно, что в области спектра 260 нм поглощает ряд фенольных соединений, содержащих одну фенольную гидроксильную группу, входящих в общий состав флавоноидов [7]. В полосе 350-370 нм наблюдается размытый максимум поглощения, который соответствует группе флавоноидов, содержащих три и более гидроксильных групп и близких по химическому составу к таким полифенолам, как рутин и кверцетин [8, 9]. В спектрах поглощения водных и спиртовых вытяжек из кукурузы сорта Радуга, представленных на рис.4, максимумы полос поглощения как в области 260 нм, так и 350-370 нм, отсутствуют в обоих случаях экстракции.

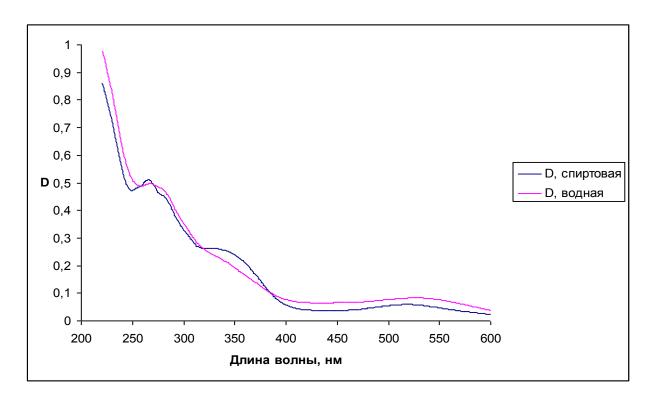


Рис. 3. Спектры поглощения вытяжек из кукурузы линии Пурпурная Саратовская: кривая 1 – водная экстракция, кривая 2 – спиртовая экстракция.

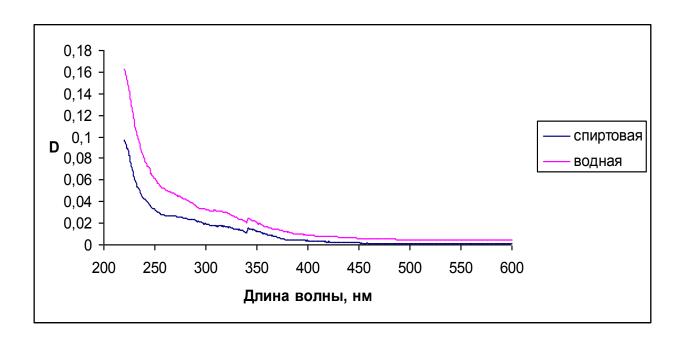


Рис. 4. Спектры поглощения вытяжек из кукурузы сорта Радуга: кривая 1 — водная экстракция, кривая 2 — спиртовая экстракция.

На основании результатов УФ спектрального анализа спиртовых и водных вытяжек из свежих листьев кукурузы линии Пурпурная Саратовская. Представляет интерес исследовать спиртовые экстракты вытяжек из сушеных и свежих частей гаплоидной кукурузы и рассмотреть данную область поглощения. На рисунке 5 и 6 приведены результаты фотометрирования вытяжек из сушеных и свежих материалов (обертки гаплоидной, и листового влагалища тетраплоидной) кукурузы линии Пурпурная Саратовская соответственно.

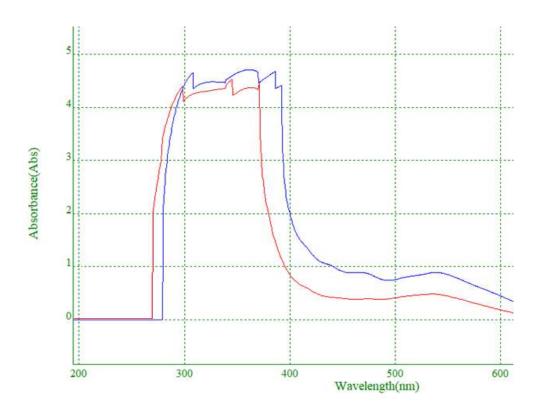


Рис. 5. Спектры поглощения спиртовых вытяжек из сушеной обертки гаплоидной кукурузы(красная) и вытяжек из свежей обертки гаплоидной кукурузы (синяя).

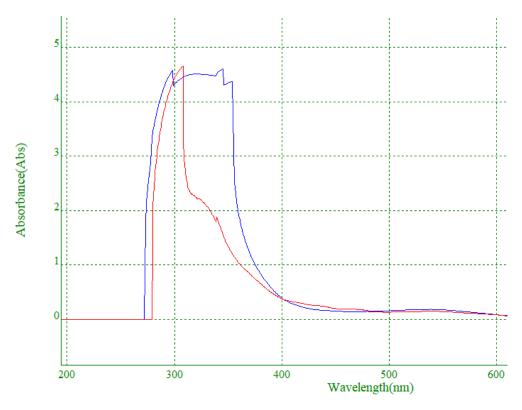


Рис. 6. Спектры поглощения спиртовых вытяжек из сушеного листового влагалища тетраплоидной кукурузы (красная) и вытяжек из свежего листового влагалища тетраплоидной кукурузы (синяя).

Из результатов измерений следует, что более выраженные экстремумы в областях поглощения 350-370 нм наблюдались для спиртовых вытяжек из свежих материалов кукурузы по сравнению со спиртовым экстрактом сушеных частей растения. Следовательно, возникает необходимость исследовать все спиртовые (содержание спирта 96%) экстракты вытяжек свежих материалов: листья, обертка, метелка, стебель, листовое влагалище и корень гаплоидной, диплоидной и тетраплоидной кукурузы сорта Пурпурная Саратовская.

Проводя анализ спектрограмм различных спиртовых вытяжек видно, что экстремумы в длине волн 350-370 нм наблюдаются у следующих спиртовых экстрактов: из листьев гаплоидной кукурузы; листового влагалища и метелки диплоидной кукурузы и обертки, стебля, листьев, листового влагалища и метелки (рисунок 7) тетраплоидной кукурузы линии Пурпурная Саратовская. В остальных спиртовых экстрактах из свежего материала экстремумы в данной области отсутствуют.

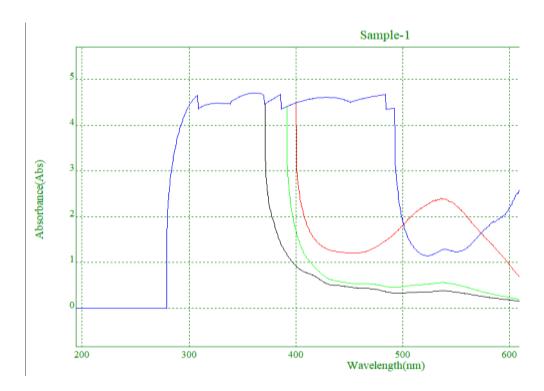


Рис.7. Спектры поглощения спиртовых вытяжек из листьев (синий), метелки (зеленый), обертки (красный) и стебля (черный) тетраплоидной кукурузы

В таблице 1 можем наглядно увидеть что наиболее выраженные пики у вытяжек из листьев гаплоидной кукурузы (4,74) и вытяжек тетраплоидной кукурузы (4,71).

Таблица 1. Значения коэффициента поглощения для различных длин волн.

Экстракт	350нм	360нм	370нм
Листья гаплоид	4.6	4.74	4.55
Лист. влагалище диплоид	4,37	4,4	4,3
Метелка диплоид	4,35	4,4	4,51
Обертка диплоид	4,35	4,39	4,4
Обертка тетраплоида	4,59	4,71	4,6
Метелка тетраплоида	4,52	4,71	4,61
Листья тетраплоида	4,52	4,71	4,6
Лист.влагалище тетраплоида	4,51	4,71	4,6
Стебель тетраплоида	4,59	4,71	4,55

Из литературы известно, что в области спектра 350-370 нм поглощается полифенольными комплексами рутина и кверцетина, терапевтические свойства которых хорошо известны.

Рутин и кверцетин – трудно разделимые соединения. Кверцетин – наиболее сильный антиоксидант среди флавоноидов. Кверцетин может вызывать апоптоз раковых клеток посредством воздействия на ДНК клетки. Рутин является гликозидом кверцетина, растения синтезируют его из кверцетина и дисахарида (рутинозы). Кроме того, рутин проявляет лигандные свойства, являясь хелатирующим агентом, связывая катионы металлов. Роль этого соединения, как антиоксиданта мало изучена. Но, например, известно: что рутин с ионами меди образует медь-рутиновый комплекс, который в значительной степени обладает антиоксидантными свойствами по сравнению с обычным рутинном. Соединение рутин-железо

снижает концентрацию перекиси водорода в организме человека до нормальной.

Следовательно возникает необходимость проведения анализа элементного состава вытяжек из кукурузы, используемые в эксперименте. Результаты которого приведены в таблице. 2, где отображены все химические элементы, входящие в составы как водных, так и спиртовых вытяжек из кукурузы линии Пурпурная Саратовская.

Таблица 2. Элементный состав спиртовых и водных вытяжек из кукурузы линии Пурпурная Саратовская

	Содержание элементов в экстрактах, отн. %		
Химический	Этанол (96%)	Вода	
элемент в	кукуруза линии	кукуруза линии	
экстракте	Пурпурная	Пурпурная	
	Саратовская	Саратовская	
Si	2,20	3,67	
P	0,33	1,72	
S	0,76	1,34	
Cl	14,13	15,70	
K	61,18	65,84	
Ca	18,35	9,70	
Fe	1,55	1,99	
Cu	1,47	-	

Видно, что в процентном содержании обнаруженных элементов, имеются различия в концентрациях таких элементов, как Са, Fe и Сu. Проведение анализа элементного состава обусловлено тем, что такие полифенолы, как рутин, связываясь с ионами различных металлов, могут влиять как на ферментативную активность, так и на ингибирование биохимических процессов в живых организмах, о чем говорилось ранее.

Заключение

Таким образом на основании проведенного исследования можно заключить, что красные пигменты кукурузы линии Пурпурная Саратовская содержат в общем составе вещества, близкие по свойствам к флавоноидам, свойства которых широко известны и используется в медицинских исследованиях при лечении бактериальных и онкологических заболеваний.

Список литературы

- 1. Polier G1., Ding J., Konkimalla B.V., Eick D., Ribeiro N., Köhler R., Giaisi M., Efferth T., Desaubry L., Krammer P.H., LiWeber M. /Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1.//Cell Death Dis. –2011 Jul 21;2:e182.
- 2. Полуконова А.В., Дурнова Н.А., Курчатова М.Н. и др. Химический анализ и способ получения новой биологически активной композиции из травы аврана лекарственного (GratiolaOfficinalis L.)/ Химия растительного сырья. − 2013. № 4. С. 165–173.
- 3. Байтман Т.П., Наволокин Н.А. Влияние экстракта аврана лекарственного на лабораторных животных с перевитой саркомой S-45 //Бюллетень медицинских интернетконференций. 2013. № 3(2). С. 374.
- 4. Наволокин Н.А., Полуконова А.В., Бибикова О.А., Полуконова Н.В., Бучарская А.Б., Маслякова Г.Н. Цитоморфологические изменения клеток почки эмбриона свиньи в культуре (spev2) при воздействии экстракта аврана лекарственного (Gratiola officinalis 1.) //Фундаментальные исследования. − 2014. № 10, часть 7. С. 1369–1374.
- 5. Наволокин Н.А., Полуконова Н.В., Маслякова Г.Н. и др. Морфология внутренних органов и опухоли лабораторных крыс с перевитым раком печени Рс-1 при пероральном введении флавоноидсодержащих экстрактов аврана лекарственного (GratiolaOfficinalis L.) и кукурузы антоциановой (ZeaMays L.) / Саратовский научно-медицинский журнал. −2013. − № 9(2). − С. 213–220.
- 6. Полуконова А.В., Наволокин Н.А., Бибикова О.А. Цитотоксическая активность in vitro экстракта аврана на культуре клеток почек эмбрионов свиньи, зараженных онковирусом / Бюллетень медицинских интернет-конференций. − 2013. № 3(2) C.375
- 7. Кросс А. Введение в практическую инфракрасную спектроскопию. М.: ИИЛ, 1961. 113 с.
- 8. Ярославский Н.Г. Методика и аппаратура длинноволновой инфракрасной спектроскопии // Успехи физических наук. 1957. Т.62, № 2. С. 159-186.
- 9. Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во Иностранной литературы, 1957. 592 с.