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ABSTRACT

The detection of coupling presence and direction between cortical areas from the EEG is a popular approach
in neuroscience. Granger causality method is promising for this task, since it allows to operate with short time
series and to detect nonlinear coupling or coupling between nonlinear systems.

In this study EEG multichannel data from adolescent children, suffering from unilateral cerebral palsy were
investigated. Signals, obtained in rest and during motor activity of affected and less affected hand, were analysed.
The changes in interhemispheric and intrahemispheric interactions were studied over time with an interval of
two months. The obtained results of coupling were tested for significance using surrogate times series. In the
present proceeding paper we report the data of one patient. The modified nonlinear Granger causality is indeed
able to reveal couplings within the human brain.
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1. INTRODUCTION

The detection of coupling presence and coupling direction of the ongoing EEG derived from different cortical EEG
electrodes is a popular approach in current neuroscience. In this study we apply a modified non-linear Granger
causality approach to human EEG data. Data of adolescents with unilateral Cerebral Palsy has previously been
recorded. Cerebral palsy (CP) describes a group of permanent disorders of movement and posture that are
attributed to non-progressive disturbances that occurred in the developing fetal or infant brain. In unilateral
CP predominantly one side of the body is affected, often with the upper extremity being more affected than the
lower extremity due to early damage in the motor areas of the contralateral hemisphere.1 In the current report
multi-channel EEG-data from one patient suffering from unilateral CP was analysed.

The Granger causality approach2 is a promising method for coupling detection when applied to biomedical
data. It can operate with short time series,3 detect non-linear coupling or coupling between non-linear systems4

using different types of model5 if these models are well suited.6 Previously it was applied to different EEG-data.
The comparison between different techniques of directed coupling detection was performed.7,8 For instance,
intracranial EEGs (local field potentials) from WAG/Rij rats were analysed with linear9–11 and non-linear12

Granger causality.

2. DATA

The data were derived from a 32-channel EEG recording with a sampling frequency of 1000 Hz. All experiment
were approved by the Ethical Committee on Animal Experimentation of Radboud University Nijmegen (RU-
DEC). Time series is 15000 points length were analysed (see fig. 1). Signals, obtained in rest and during motor
activity of the affected and less-affected hand, were investigated during two recording sessions. Three samples
of time series from each recording session were further analysed. Since the total number of channels was large
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Figure 1. The sample of filtered times series data from EEGs channels: C3, C4, F3; and its power spectra from the
recoding session with the active affected left hand.

and studying all possible combinations could be misleading and very time consuming, the coupling analysis was
performed on a-priori selected channel pairs (see table 2).

First, time series from multi-channel EEG data had to be preprocessed. Second, moving average subtraction
with 1 s window length was implemented in order to remove slow trends, which are the results of breathing, slow
movements and other activities. Then a band-pass filter (2.2–30 Hz) was applied. Therefore the 50 Hz artefacts
went away automatically.

Spectrum and autocorrelation function were plotted for all considered time series fragments. The analysis of
spectrum showed the stable peak at approximately 10 Hz (high α band). For many channels the raise also was
observed in β range near the 20 Hz. These findings were used in order to chose the method parameters.

3. METHOD

Let us remind the key point of Granger causality. Supposing that we have time series of two systems — a series
{xn}Nn=1 from the system X and a series {yn}Nn=1 from the system Y , where n = 1, 2, ..., N is discrete time, N
is the series length. The task is to determine whether the system Y drives the system X or not.

First, an individual model (dynamical system) is constructed:

x′n+τ = f(xn, xn−l, . . . , xn−(Ds−1)l, c
s), (1)

Further author information: (Send correspondence to Maksim V. Kornilov)
Maksim V. Kornilov: E-mail: kornilovmv@gmail.com

Proc. of SPIE Vol. 9917  991729-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/24/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



C4

FC6

CP6

FC2

CP2

F4

P4

F3

FC1

FC5

C3

CP1

CP5

P3

Figure 2. The investigated couplings between the EEGs channel.

where x′n is a predicted value at the time moment n and it may differ from the measured value xn, f is an
approximating function (if it is non-linear, method is called a non-linear Granger causality), l — lag of the
model, i. e. the number of discrete time points between the the two subsequent values from {xn}Nn=1, forming
Ds-dimensional state vector of the model xn = (xn, xn−1, ..., xn−(Ds−1)l, τ is a prediction time — the distance
in time between the predicted point and the closest point forming the state vector, Ds is a dimension of the
individual model (the number of points included into the state vector13,14), cs is an unknown vector of coefficients
which is chosen using least squares fit to minimise the standard error of approximation (1):

ε2s =
1

N

N∑
n=τ+(Ds−1)l+1

(x′n − xn)
2

(2)

Second, the joint model is constructed, in which Da points from the series {yn}Nn=1 are used:

x′′n+τ = g(xn, xn−l, . . . , xn−(Ds−1)l, yn, yn−l, . . . , yn−(Da−1)l, c
j), (3)

where x′′n is a value predicted with the model, cjare the joint model coefficients. The standard prediction error
of the joint model similarly to (2) has the form:

ε2j =
1

N

N∑
n=τ+(max(Ds,Da)−1)l+1

(x′′n − xn)
2
. (4)

If ε2j < ε2S , the system Y is considered to drive the system X (systems are coupled). Prediction improvement
index is typically used as a measure of coupling:

PI = 1−
ε2j
ε2S
. (5)

If PI = 0 (considering the signal {yn}Nn=1 did not help in predicting {xn}Nn=1), it is considered that Y has no
effect on X. If the PI → 1 (considering the signal {yn}Nn=1 has significantly improved the prediction of {xn}Nn=1),
it should be regarded as Y drives X.
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Practice shows that the choice of the parameters of the described procedure (lag l, prediction time τ , dimen-
sions Ds and Da, type of nonlinear functions f and g) significantly determines the efficiency of the method. For
example, the use of too small or too large τ may cause a large number of errors: positive conclusions about the
coupling, that in fact does not exist.15,16 Neglecting the nonlinearity in the modelling often leads to a situation,
when really existing links are not detected.4,17 The problem seems to be major since most coupling analysis
techniques are very model-dependent.18 The parameters for this investigation were chosen according to the
paper: polinoms degree is equal 3, Ds = 2, Da = 1, l = 25, τ = 25.

In additional, obtained results were tested for significance using surrogate time series, which were build with
randomisation phase Fourier transform method with p-value = 0.05.

4. RESULTS AND DISCUSSION

Applying this method to human EEG data revealed a number of significant couplings. The results of the methods
application are shown in the fig. 3. Since analysis for each channel pair was performed on three samples of time
series, the following notification was used: if significant coupling was observed in one of the time series this was
plotted with grey arrows, if significant coupling was observed in two of the time series this was plotted with
black dashed lines, and if significant coupling was observed in all three time series this was plotted with black
solid. Only couplings significant on the level 6 0.5 were plotted.

In order to make the presentation of coupling information more compact, the summary coupling coefficient
was calculated for 4 different cases: for cross-hemispheric coupling in both directions: CL→R (from left to right)
and CR→L (from right to left), and for intra-hemispheric coupling separately in the left CintraL and right CintraR
hemisphere. These coefficients can be used to characterise the coupling asymmetry.

The maximal values of coupling coefficients in the network was found for “active affected left hand” condition
as for intra-lateral as for cross-lateral coupling. I. e. the whole network becomes more involved when the patient
starts to use the affected hand. This can be interpreted as a mechanism of plasticity in the brain. In contrast,
the number of interactions for the “active non-affected right hand” condition is minimal. I. e. the activity of the
non-affected hand can be performed mainly without involvement of the affected hemisphere.

Four “rest” conditions may be considered approximately similar with some variation in coupling. Most
differences can be seen in CR→L, i. e. in the direction from normal to affected hemisphere.

Two different time moments demonstrate the similar results for the affected hand, but very different for the
non-affected one, especially in the “rest” condition. This can be interpreted by the following hypothesis. When
the affected hand is used, the whole brain takes part in this process due to plasticity mechanism. This mechanism
may involve different parts of the brain in order to compensate different activities of the affected part. when
the non-affected hand is used, the plasticity mechanism is not necessary. For the time moment “T1” (before the
treatment) larger involvement of the brain is the result of increased interactions due to non stable substitution of
activities which corresponded previously to the damaged part. But after the treatment, the replacement becomes
more stable, and therefore the overall brain interaction decreased.

In summary, the number of significant couplings are different for the rest and active condition of the affected
left hand and less-affected right hand. Also, the number of significant couplings are different between the two
time points. We have to analyse the existing data of more adolescents in order to determine whether these
differences are significant. However, this proceeding paper clearly shows that this modified non-linear Granger
causality is able to reveal couplings within the human brain.
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Figure 3. Coupling Architecture shown for the 001 patient. AAL - interaction from active affected left hand; ANR - from
active lessaffected right hand; RAL - from rest affected left hand; RNR - from rest less-affected right hand.
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