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Abstract: Objective — This study compares the statistical characteristics of interaction between 0.1 Hz oscillations in heart rate variability
(HRV) and photoplethysmographic waveform variability (PPGV) in healthy subjects and patients with myocardial infarction (Ml).

Material and Methods — We studied 23 healthy subjects (20 men and 3 women, aged 2643 years) and 23 patients (12 men and 11 women,
aged 52+4 years) at about one month after MI. The 10-minute signals of simultaneously recorded electrocardiogram (ECG) and
photoplethysmogram (PPG) were studied. We calculated the total percentage of phase synchronization between the studied 0.1 Hz
oscillations and estimated the distribution functions of duration of synchronous and non-synchronous epochs, the variability of basic
frequency of oscillations, and variance of phase noises in 0.1 Hz oscillations in HRV and PPGV.

Results — The total percentage of phase synchronization between 0.1 Hz oscillations is significantly greater in healthy subjects than in Ml
patients (47+3% and 26+4%, respectively). Significant difference between these two groups in the distribution of duration of synchronous
and non-synchronous epochs was not revealed. The Ml patients had greater variance between the basic frequencies of 0.1 Hz oscillations
in HRV and PPGV than healthy subjects. This phenomenon correlates with the increased level of phase noises in the records of Ml patients.

Conclusion — The quality of synchronization between 0.1 Hz oscillations in HRV and PPG is associated with the strength of influence of
external factors (noises) and variability of the basic frequency of these oscillations.

Keywords: cardiovascular system, phase synchronization, time series, low-frequency oscillations

Cite as Shvartz VA, Karavaev AS, Borovkova El, Mironov SA, Ponomarenko VI, Prokhorov MD, Ishbulatov YM, Lapsheva EE, Gridnev VI, Kiselev AR.
Investigation of statistical characteristics of interaction between the low-frequency oscillations in heart rate variability and photoplethysmographic
waveform variability in healthy subjects and myocardial infarction patients. Russian Open Medical Journal 2016; 5: e0203.

Correspondence to Dr. Anton R. Kiselev. Address: Research Institute of Cardiology, 141, Chernyshevsky str., Saratov, 410028, Russia.
Phone: +7 (8452) 201 899. E-mail: kiselev@cardio-it.ru

Introduction [6, 7]. Though, these mechanisms are actively interacting and, as we
showed earlier [8], this interaction leads, in particular, to phase and
frequency synchronization. However, synchronization between 0.1 Hz
oscillations in HRV and PPGV is not permanent even for healthy
subjects. This led to the development of quantitative measure of
synchronization strength between those oscillations — total percent of
phase synchronization, measured in percent [9]. This index has already
demonstrated its potential importance for clinical cardiology, for
example, for evaluating of five-year fatal risk in patients after
myocardial infarction (Ml) and personalizing of medical therapy of
coronary heart disease and hypertension [10-12].

Today low-frequency oscillations in cardiovascular system draw
high researcher’s interest [1-3]. In particular, such oscillations with
main frequency near 0.1 Hz can be detected in heart rate variability
(HRV), blood pressure variability and peripheral blood flow variability.
Perceptions about baroreflectory origin of 0.1 Hz oscillations are
prevailing [4, 5]. There are evidence of functional independence
between mechanisms of cardiovascular autonomic control that cause
low-frequency oscillations in HRV and peripheral blood flow variability
(assessed by photoplethysmographic waveform variability (PPGV))
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Figure 1. Sample probability density distribution (P(b)) for lengths of
synchronous (a) and non-synchronous (b) sections of 0.1 Hz oscillations in
HRV and PPGV from healthy subjects (solid line) and Ml patients (dashed
line).

However, total percent of phase synchronization only estimate
the relation between time, which 0.1 Hz oscillations in HRV and
PPGV were synchronized, and total length of observation (in our
previous studies records were 10 minutes long). For healthy
subjects this index varying in wide large of 20-60%, however,
statistically it is significantly different for patients with coronary
heart disease, in particular, for those after Ml [8]. Apparently this
index is generalized measure of coupling strength between
mechanisms of autonomic regulation of various parts of
cardiovascular system, and is not suitable for studying of such
characteristics of regulatory processes as: phase-synchronization
sections longevity variation over time, asynchronous behavior
sections  longevity variation over time, extent of
desynchronization, significance of the external factors influence on
synchronization. Development of special criteria for detailed study
of interactions between low-frequency oscillations in circulatory
system is seems to be perspective for fundamental and clinical
cardiology.

Groups with sufficiently opposing state of cardiovascular
autonomic control, such as healthy young subjects and patients
after MI, can be used to investigate the potential possibility of
detailed analysis of dynamical properties of interactions between
0.1 Hz oscillations in HRV and PPGV.

Objective of this article is to compare statistical characteristics
of interaction between low-frequency oscillations in HRV and
PPGV for healthy subjects and MI patients.

Material and Methods
We studied the following two groups of patients:

e 23 healthy subjects (20 men and 3 women) aged 2643
years;

e 23 patients (12 men and 11 women) aged 52+4 years,
one month after MI. Patients were undergoing hospital
treatment in hospital of Research Institute of Cardiology
(Saratov, Russia).

Electrocardiogram (ECG) and left ring finger
photoplethysmogram (PPG) were simultaneously measured for
each resting patient in supine position with 250 Hz sampling rate
and 14 bit resolution. Signal of cardiointervalogram (CIG) —
sequence of time intervals between two consequent R spikes —
was extracted from ECG signal. Equidistant CIG was then
synthesized by interpolation of non-equidistant signal with cubic-
splines with 5 Hz sample rate.

Rhythms that reflect activity of studied regulatory systems
were then extracted by filtering CIG and PPG signals with band
pass filter in the range of [0.06, 0.14] Hz. Sample rate of extracted
PPG signal was limited by 5Hz by decimation. Hilbert
transformation was used to estimate instantaneous phases of
oscillations of studied systems, and then the difference between
estimated phases was calculated.

Borders of phase synchronization intervals and probability-
density functions (PDF) of lengths of synchronous and non-
synchronous sections were then determined for healthy subjects
and Ml patients via original method, proposed in our previous
paper [9]. Total percent of phase synchronization was also
calculated via method, proposed in [9]. PDF of slope angels of lines
approximating the non-synchronous sections was used to estimate
the variability of main frequency in low-frequency band of
oscillations in HRV and PPGV. For both groups of subjects,
elevation rate of instantaneous phase’s difference was determined
by the distribution of difference between instantaneous phases,
which was also determined.

Nature and properties of phase noise, which is mainly
determined by internal dynamical noises [13-15] but also includes
measurement noises, is an important question that rises during
studying of phase dynamics of systems of biological origin.
Dispersion of phase noises was studied for 0.1 Hz oscillations in
HRV and PPGV to compare the intensity of total influences of
external and internal factors on interaction of low-frequency
mechanisms of cardiovascular autonomic control. We used the
special technic to extract phase noise. Phase noise was considered
to be a residual of the sliding mean model for signal. Trends that
were approximated via sliding mean model with 20 s length
window (2 characteristic periods) were than subtracted from
experimental phase’s difference to estimate the noise
characteristics. Statistical and spectral properties of the residuals
of such models were estimated in this paper.

Results

Value of total percent of phase synchronization between
0.1 Hz oscillations in HRV and PPGV was 47+3% for healthy
subjects and 2614% for patients after Ml (data are represented in
the form of mean and standard deviation — M+SD).

Analysis of phase dynamics was used for detailed study of
characteristics of interactions between low-frequency oscillations
in HRV and PPGV. For both groups of subjects selective density
functions were calculated for lengths of synchronous (Figure 1a)
and non-synchronous (Figure 1b) sections of the records from the
position of interaction between 0.1 Hz oscillations in HRV and
PPGV. It appears that relatively short intervals of synchronization
(about 30-70 seconds) interchanging with non-synchronous
intervals of comparable length are prevailing for both groups.
Significant difference was not detected between lengths
distributions of synchronous and non-synchronous intervals
calculated for studied low-frequency oscillations in healthy
subjects and Ml patients.

Figure 2 illustrate the results of estimation of variability of the
main frequency in low-frequency band of oscillations in HRV and
PPGV via calculation of PDF of slope angels of lines approximating
the non-synchronous sections. Graphs represented in Figure 2
describe selective distributions of difference of instantaneous
phases of studied oscillations in HRV and PPGV. For example, if
instantaneous frequency of studied oscillation is equal to 0.105 Hz

© 2016, LLC Science and Innovations, Saratov, Russia

Www.romj.org



ISSN 2304-3415, Russian Open Medical Journal

2016. Volume 5. Issue 2. Article CID 0203
DOI: 10.15275/rusomj.2016.0203

RO

3o0f5

Physiology and Pathophysiology

for HRV and 0.100 Hz for PPGV, than instantaneous phases
difference (plotted on X axis in Figure 2) is equal to 0.005 Hz.
During the whole record of ECG and PPG signals this difference is
varying in certain range. If instantaneous phases of both
oscillations are equal then difference will equal to zero. It appears
that high degree of mismatches between main frequencies of low-
frequency oscillations in HRV and PPGV is typical for Ml patients
and not for healthy subjects.

Figure 3 represents the comparison between intensities of
total influence that unaccounted external and internal factors had
on interaction between low-frequency mechanisms of
cardiovascular autonomic control. As it is seen from Figure 3 the
phase noises distributions is close to normal. Mean value of phase
noise dispersion (it was measured as mean level of dispersion
between all subjects) is equal to 0.040+0.002 for healthy subjects
(Figure 3a) and 0.070+0.004 (data are represented in the form of
mean and standard error of the mean — M+m) for MI patients
(Figure 3b). From these results we concluded that intensity of
phase noise is almost 2 times higher for diseased patients than for
healthy ones. Results of the spectral analysis of the phase noises is
represented in Figure 4. Maximum values of these spectra can be
seen near 0.005 Hz and can represent the fluctuations associated
with humoral regulation processes.

Discussion

Better understanding of characteristics of physiological
processes that take place in cardiovascular system can be achieved
by studying the properties of oscillation processes in this system.
Low-frequency oscillations in circulation are known to be
spontaneous and can be modulated [2]. Such oscillations in blood
pressure are supposed to be of baroreflectory origin [4, 5, 16],
while origin of 0.1 Hz oscillations in PPGV are still matter of
debate. It is crucial to consider during analysis of PPG and laser
Doppler flowmetry (LDF) data. 0.1 Hz oscillations in PPG signal
mainly characterize baroreflectory regulation of blood pressure,
since dactylar arteries blood filling makes considerable
contribution to this signal [17, 18]. Whereas low-frequency
oscillations in LDF are mainly characterize spontaneous vasomotor
activity [19]. It is reasonable to consider cardiovascular autonomic
control to be a complex nonlinear system with several self-exciting
loops, because of functional independence between 0.1 Hz
oscillations in HRV and blood pressure variability (and PPG) [7, 20]
and ability of those rhythms to synchronize [8, 20]. However, in
spite of apparent reasons to analyze synchronization between
0.1 Hz oscillations [10-12], characteristics of this phenomenon are
not yet studied.

Our study has revealed new information about modulation of
main frequencies in low-frequency mechanisms of autonomic
regulation by various factors that were treated as phase noise. It
was shown that depth of such modulation can be associated with
the quality of interaction between mechanisms of autonomic
control. In particular, Ml patients have significantly higher phase
noise in 0.1 Hz oscillations in HRV and PPGV, than healthy subjects.
This fact can be due to either heighten senility of the autonomic
regulation to the external factors, or due to cardiovascular disease
pathogenesis and its strong influence. Heighten variability of the
main rhythm in low-frequency band can also be due to overall
functional instability of the regulatory mechanism in respect to
external factors.
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Figure 2. Distribution histogram (P(Af)) of instantaneous phases
difference (4f) between studied loops of autonomic regulation in healthy
subjects (solid line) and Ml patients (dashed line).
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Figure 3. Phase noise distribution for a set of healthy subjects (a) and Ml
patients (b) approximated by Gaussian distribution.
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Figure 4. Estimation and error of the mean of spectral power density of
phase noise calculated for set of healthy subjects (solid line) and MI
patients (dashed line).

Although lengths of synchronous sections are almost equal
(difference of about several seconds) for healthy subjects and Ml
patients, total time of desynchronization between 0.1 Hz
oscillations is considerably larger for Ml patients.
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Conclusion

It was shown that relatively short interchangeable intervals of
synchronous and non-synchronous behavior are typical for 0.1 Hz
oscillations in HRV and PPGV for both healthy subjects and Mi
patients, and therefore can characterize interaction between low-
frequency mechanisms of cardiovascular autonomic control.
However, internal and external factors seem to have higher
influence on MI patients system of autonomic control of
circulation. Ml patients in comparison with healthy subjects have
higher level of phase noise in 0.1 Hz oscillation in HRV and PPGV.
Also in comparison with healthy subjects Ml patients have higher
degree of mismatch between main rhythms in low-frequency
oscillations in HRV and PPGV.
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