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This volume is an outcome of XII International Conference Algebra and Number
Theory: Modern Problems and Application, dedicated to 80-th anniversary of Profes-
sor V. N. Latyshev which was held in Leo Tolstoy Tula State Pedagogical University
on 21-25 April 2014. The purpose of the conference is coordination of modern
research in algebra and number theory. The program of the conference consisted of
plenary talks and talks in eight thematic sections: Group Theory; Semigroup Theory
and Universal Algebra; Ring and Module Theory; Applied and Computer Algebra,
Cryptography and Discrete Mathematics; Analytical Number Theory; Diophantine
Approximations and Transcendental Number Theory; Geometry of Numbers and
Uniform Distribution; Number-theoretical Method in Approximate Analysis.

Plenary reports cover a wide range of modern achievements in algebra and
number theory in the following areas:

— combinatorial group theory;
— finite groups and representation;
— Abelian groups;
— semigroups of transformations;
— rings and modules, homological methods;
— Hopf algebras;
— algebra and superalgebra Lie;
— varieties of algebras;
— Boolean algebras and functions;
— algebraic surface;
— cryptography and coding;
— computer algebra;
— analytical numbers theory;
— Diophantine approximations and the theory of transcendental numbers;
— geometry of numbers;
— number-theoretic method of approximate analysis.

Section 1 "Group Theory"
The reports of this section regarded to new results in the theory of groups such as

finite groups and representations; Abelian groups; infinite groups of various classes
(nilpotent, solvable); combinatorial group theory; theory of varieties of groups.

Section 2 "Semigroup Theory and Universal Algebra"
The reports of this section presented a series of new works, related to the

modern theory of semigroups of transformations, semigroup of quotients, to the
constructions of semigroups and the theory of representations of semigroups. Also the
achievements of the Volga Algebraic school which was projected by L. A. Skornyakov
were submitted in the program of this section.

Section 3 "Ring and Module Theory"
New results in the ring theory reflect the contemporary tendency to create a

common theory of rings (associative and nonassociative) and corresponding repre-
sentation theory. Significant attention is devoted to generalizations of the ring theory
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such as semirings, nearring arising in applications, and rings with additional struc-
tures such as topological, ordered, graded and filtered rings. In the program section
we notice the results concerning with Lie superalgebras and other classes of algebras
close to ones, with combinatorial methods, and with the development of structural
methods.

Section 4 "Applied and Computer Algebra, Cryptography and Dis-
crete Mathematics"

The reports of this section deal with wide range of algebraic applications in
Computer Science, Economics, Physics, Management and Cryptography.

Section 5 "Analytical Number Theory"
The reports of this section is devoted to the studies on the classic areas of the

analytical number theory such as theories of Riemann zeta function and Dirichlet
L-functio; additive objectives; the method of trigonometric sums.

Section 6 "Diophantine Approximations and Transcendental Number
Theory"

The reports of this section presents the latest advances in algebraic, transcenden-
tal and p-adic numbers.

Section 7 "Geometry of Numbers and Uniform Distribution"
The achievements of the Vladimir-theoretic were presented in the program sec-

tion

Section 8 "Number-theoretical Method in Approximate Analysis"
In the program section the achievements of the Tula theoretic-number school

founded by V. D. Podsypanin were presented. All reports deal with modern develop-
ment of theoretical and numerical method of approximate analysis. This method
was based and developed in 1957–1963 years in the works of the participants of the
seminar Steklov Mathematical Institute of Academy of Sciences of the USSR under
direction of N. C. Bakhvalov, N. M. Korobov and N. N. Chentsov.
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UDC 511.3

BOUNDED REMAINDER SETS OF SMALL
DIMENSIONS1

A. A. Abrosimova (Vladimir)
albina.abrosimowa@yandex.ru

We consider the set T , for this is set given the counting function r(α, i, T ) = ♯{j :
0 ≤ j < i, {jα} ∈ T}. If the parameter α is irrational, then by using the criterion of
Weyl, we obtain an asymptotic formula

r(α, i, T ) = i|T |+ δ(α, i, T ), (1)

where δ(α, i, T ) = o(i) is the remainder of the formula (1) and i→∞.

Definition 1. The set T is called the bounded remainder set (BR-sets), when
we have the inequality |δ(α, i, T )| 6 C for all values i, where C is constant.

E. Hecke constructed the first example bounded remainder sets. It was intervals
T 1 of length 0 < |b+aα| < 1, where a, b ∈ Z. Hecke obtained the following remainder
estimate

|δ(α, i,X)| 6 |a|.
The more difficult task to find a constructions for multidimensional bounded

remainder sets. R. Szüsz constructed the first example of two-dimensional bounded
remainder sets in 1954. They were a family of parallelograms. P. Liardet analyzed
this construction and proved the possibility of reduction of sets with the dimension
D to a similar sets with the dimensionD−1. Rauzy G. (1982) and S. Ferenczi (1992),
belonging to French mathematical school, have found a link between the property to
be BR-sets with first return map. But none of the above has not received estimates
were founded by the above authors in multidimensional case.

In 2011 V.G.Zhuravlev found a new way of constructing the bounded remainder
sets, he used a stretching of the multidimensional unit cube. And he proved the
Hecke’s theorem for the multidimensional case [2].

The author of this paper constructs two-dimensional bounded remainder sets
using hexagonal torus development and constructs three-dimensional sets using the
Fedorov hexagonal prism.For this sets we found exact estimates of the remainder.

In the two-dimensional case parameter c = (c1, c2), where c ∈ C = {c = (c1, c2) ∈
R2; ci ≥ 0, min(c1, c2) 6 1}, produces the hexagonal torus development T 2(c). We
denote σ(x) = x1 + x2, where x = (x1, x2). If σ(c) 6 1, we get a convex hexagon,
otherwise we get nonconvex hexagon. Coordinates of the vertices of our hexagon are
(0, 0), (1− c1,−c2), (1, 0), (1− c1, 1− c2), (0, 1), (−c1, 1− c2).

Using the vector α = (α1, α2) = tc, we get a tiling of development on the field
T 2
k , k = 0, 1, 2. There 0 6 t 6 1 for σ(c) 6 1 и 0 6 t 6 1

c1+c2
for σ(c) > 1. In the

1RFBR project № 14-01-00360
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article [3] author proved, that exchange transformation Sv of tiles T 2
k is equal to the

rotation Sα of the torus T2 on vector α.
For each tile, we can define the counting functions rk(i) = ♯{j : Sjα(0) ∈ T 2

k , 0 ≤
j < i} and a corresponding functions δk(i) = rk(i) − isk, k = 0, 1, 2. The following
theorem is proved.

Theorem 1. Suppose we have a torus rotating Sα on irrational vector α =
(α1, α2), i.e. numbers α1, α2, 1 are linearly independent over Z. Let we have a tiling
of the torus T2 = T2

0⊔T2
1⊔T2

2, and its development is T 2(c). Then, for the remainders
δk(i), k = 0, 1, 2, there are following inequalities:

0 6 δ0(i, x0) 6 2− σ(c) for σ(c) 6 1;
σ(c)− 1 6 δ0(i, x0) 6 1 for σ(c) > 1;
−1 6 δ1(i, x0) 6 c1;
−1 6 δ2(i, x0) 6 c2.

In the three-dimensional case torus developments are the Fedorov hexagonal
prisms T 3. We construct it by multiplying toric developments. This multiplication
was first discussed in the article [2]. Now we use the product to unit segments and
hexagonal toric developments [4]. We get a prism tiling T3 = T3

0 ⊔ T3
1 ⊔ T3

2 ⊔ T3
3.

For each tile T 3
n , n = 0, 1, 2, 3, we can define the counting functions rn(i) and the

corresponding functions δn(i). In [4] for tiles T 3
n , the author has found the exact

estimate of the remainder δn(i).
So the Hecke’s theorem is proved for the two-dimensional and three-dimensional

cases.

REFERENCES
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ON PARTUALLY ORDERED SEMIGROUPS OF
RELATIONS WITH DIOPHANTINE OPERATIONS

N. Y. Anshvaeva, D. A. Bredikhin (Saratov)
anshvaevanatalya@mail.ru bredikhin@mail.ru

A set of binary relation Φ closed with respect to some collection Ω of opera-
tions on relations forms an algebra (Φ,Ω) called an algebra of relations. As a rule,
operations on relations are defined by formulas. These operations are called logical.
One of the most important classes of logical operations on relations is the class of
diophantine operations [1,2] (in other terminology – primitive-positive operations
[3]). An operation on relations is called diophantine if it can be defined by a first
order formula containing in its prenex normal form only existential quantifiers and
conjunctions. Algebras of relations with diophantine operations can be considered
to be partially ordered by the relation of set-theoretic inclusion ⊂.

Note that the operation of relation product ◦ is a diophantine operation. An
algebra of relations of the form (Φ, ◦) is a semigroup, and every semigroup isomorphic
to some semigroup of relations. There are some other associative diophantine opera-
tions on relations. We concentrate our attention on the following associative diophan-
tine operation of relation ∗ that is defined as follows. For any relations ρ and σ on
U , put

ρ ∗ σ = {(u, v) ∈ U × U : (∃w, t)(u,w) ∈ ρ(u, t) ∈ σ}.
For any set Ω of operations on relations, let R{Ω} (R{Ω,⊂}) denote the class

of all algebras (partially ordered algebras) isomorphic to ones whose elements are
binary relations and whose operations are members of Ω. Let V ar{Ω} (V ar{Ω,⊂})
be the variety generated by R{Ω} (R{Ω,⊂}).

The main results are formulated in the following theorems.

Theorem 1. An partially ordered semigroup (A, ·,≤) belongs to the class
R{∗,⊂} if and only if it is commutative and the following identities hold

x2y = xy (1), x ≤ x2 (2), xy ≤ x2 (3).

Theorem 2. An algebra (A, ·,∧) of the type (2, 2) belongs to the class R{∗,∩}
if and only if (A, ·) is commutative semigroup that satisfies the identity (1), (A,∧)
is a semilattice, and the following identities hold

x ∧ x2 = x (4), x(x ∧ y) = x ∧ y (5), (x2 ∧ y)z = xyz (6).

Theorem 3. An algebra (A, ·,∨) of the (2, 2) belongs to the variety
V ar{∗,∪} if and only if (A, ·) is commutative semigroup that satisfies the identity
(1), (A,∨) is a semilattice, and the following identities hold

x ∨ x2 = x2 (7), xy ∨ x2 = x2 (8), x(y ∨ z) = xy ∨ xz (9).

Theorem 4. An algebra (A, ·,∨,∧) of the (2, 2) belongs to the variety
V ar{∗,∪,∩} if and only if (A, ·) is commutative semigroup that satisfies the identity
(1), (A,∨,∧) is a distributive lattice, and the identities (4), (5), (6), (9) hold.
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UDC 512.579

ABOUT GENERATING SETS OF DIAGONAL
ACTS OVER SEMIGROUPS OF ISOTONE

TRANSFORMATIONS
T. V. Apraksina (Moscow)

taya.apraksina@gmail.com

A right act [1] over a semigroup S is defined as a set X with a mapping X×S →
X, (x, s) 7→ xs satisfying the rule (xs)s′ = x(ss′) for x ∈ X, s, s′ ∈ S. A left act Y
over a semigroup S is defined dually, that is a mapping X × S → Y , (s, y) 7→ sy, if
s(s′y) = (ss′)y for y ∈ Y , s, s′ ∈ S. If a set X is a left act over a semigroup S and a
right act over a semigroup T , we call it bi-act if there is the equality (sx)t = s(xt)
for x ∈ X, s ∈ S, t ∈ T is held. If S is a semigroup, then the set S × S will be a
right act relating to the rule (x, y)s = (xs, ys) for any x, y, s ∈ S, and a left act if
s(x, y) = (sx, sy), and also a bi-act in case of two rules are held. We call them right,
left diagonal acts and diagonal bi-act. Denote them (S × S)S, S(S × S), S(S × S)S
respectively. We will call a diagonal bi-act as cyclic, if it is generated by one element.

It was proved in [2] that diagonal right act (S × S)S, diagonal left act S(S × S)
and diagonal biact S(S × S)S are cyclic if S = TX , PX or BX when X is an infinite
set, TX is the semigroup of all transformatios X → X, PX is the semigroup of all
partial transformations, BX is the semigroup of binary relations over the set X.
There is a similar question for the semigroup OX of all isotone (order-preserving)
mappings α : X → X, where X is partially ordered set, i.e. such mappings α, that
x ≤ y ⇒ xα ≤ yα for any x, y ∈ X. In previous papers the author investigated the
diagonal acts over the semigroup OX and defined conditions for cycling and finite
generation of those acts (see [3]). It was also proved that for any infinite chain X
diagonal acts over the semigroup OX cannot be cyclic. The main result of this paper
summarizes the results mentioned in case where X is a set of natural numbers N
with normal order. Namely, a diagonal bi-act over semigroup of isotone mappings
ON does not have countable generating system.
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Definition 1. Let α, β: N → N be isotone mappings. We will call (α, β) a
strong pair if the following rules are held:

(i) iα ̸= jα, iβ ̸= jβ for i ̸= j

(ii) iα ̸= jβ for any i, j (i.e. imα ∩ imβ = ∅)

(iii) for any k there is l such that (lα = k ∨ lβ = k) (i.e. imα ∪ imβ = X).

The proof of the Theorem is based on two statements of a technical nature.

Lemma 1. Let α, β : N→ N be isotone transformations such that imα, imβ are
infinite sets. Then there are isotone transformations α̃, β̃ which form a strong pair
such that (α̃, β̃)γ = (α, β) for a some isotone transformation γ.

Each strong pair can be associated with a sequence of zeros and ones. We will call
an elementary decimation simultaneous removal of i-th one and i-th zero (for any
i). A decimation is a result of elementary decimations by finite or infinite number
of times.

Lemma 2. Let ε, η be sequences of ones and zeros that are corresponded to strong
pairs (α, β) and (α′, β′) and α′ = γαδ, β′ = γβδ for some γ, δ ∈ ON. Then the set η
can be obtained from a set ε by decimation.

With these statements reasoning close to Cantor’s diagonal method, we proved
the following Theorem.

Theorem 1. Diagonal bi-act ON(ON × ON)ON does not have an countable set of
generators.

The Theorem has two corollaries with similar results for diagonal left and diago-
nal right acts.

Corollary 1. Diagonal left act ON(ON×ON) does not have a finite or countable
generating set.

Corollary 2. Diagonal right act (ON ×ON)ON does not have a finite or coun-
table generating set.

REFERENCES

[1] Kilp M., Knauer U., Mikhalev A.V. Monoids, acts and categories. Berlin –
New York: W. de Gruyter, 2000
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UDC 512.522

GRADED MORITA CONTEXT
I. N. Balaba (Tula)

ibalaba@mail.ru

Morita contexts are actively researched in recent decades, they have numerous
applications [1, 2, 3, 4].

All rings considered in this paper are associative with identity, graded by arbitra-
ry multiplicative group G, all modules are unitary G-graded, gr.mod−A (A−gr.mod)
is the category of right (left) graded A-modules whose objects are right (left) G-
graded A-modules and morphisms are graded-preserving homomorphisms.

If M,N ∈ gr.mod−A then HOMA(M,N)g is the set of homogeneous homomor-
phisms of degree g, i.e. A-linear maps such that f(Mh) ⊆ Ngh (h ∈ G). It is clear that
HOMA(M,N) = ⊕g∈GHOMA(M,N)g is a graded Abelian group, and ENDA(M) =
HOMA(M,M) is a graded ring, which is called the graded endomorphism ring of
a graded A-module M . If we consider left A-modules then f ∈ HOMA(M,N)g
means that (Mh)f ⊆ Nhg. Let M = ⊕g∈GMg and σ ∈ G then M(σ) is the module
M considered with the grading M(σ)g = Mσg for right module (and M(σ)g =
Mgσ for left module); the module M(σ) is called the σ-suspension of M . The
graded equivalence in the categories of graded modules is called the equivalence
which commutes with all σ-suspension functor.

Graded Morita context (A,B, P,Q, µ, τ) consists of two graded rings A and
B, two graded bimodules APB and BQA and two bimodule homomorphisms µ :
P ⊗B Q→ A, τ : Q⊗A P → B preserving grading and satisfying the conditions:

(1) µ(p⊗ q)p′ = pτ(q ⊗ p′),
(2) τ(q ⊗ p)q′ = qµ(p⊗ q′) (p, p′ ∈ P, q, q′ ∈ Q).

For convenience, we denote µ(p⊗ q) = pq and τ(q ⊗ p) = qp.
It is clear that if P ∈ gr.mod–B then denoted by A = ENDB(P ),

Q = HOMB(P,B), gp(q ⊗ p) = qp, fp(p⊗ q) = pq ∈ B where (pq)p′ = p(qp′) for all
p, p′ ∈ P , q ∈ Q we get the graded Morita context (A,B, P,Q, fP , gP ) which called
standard Morita context associated to the module PB.

A module P ∈ gr.mod−A is called gr-generator if ⊕g∈GP (g) is the generator for
gr.mod−A [5, лемма 2.1].

Theorem 1. Let P be a graded B-module, A = ENDB(P ), Q = HOMB(P,B)
and (A,B, P,Q, fP , gP ) be graded Morita context associated to the module PB. Then:

1) gP is isomorphism if and only if PB is gr-generator;
2) fP isomorphism if and only if P is finitely generated projective B-module.
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Theorem 2. Let (A,B, P,Q, µ, τ) be a graded Morita context such that µ и τ
are isomorphisms. Then:

1) µ и τ induce the bimodule isomorphisms

P ∼= HOMB(Q,B) ∼= HOMA(Q,A),
Q ∼= HOMB(P,B) ∼= HOMA(P,A) ;

2) the homomorphisms of the graded rings

ENDB(P ) ←− A −→ ENDB(Q)◦,
ENDA(P )◦ ←− B −→ ENDB(P ),

induced by the structures of the bimodules P and Q are the isomorphisms;
3) the structure of the right graded A-ideals is isomorphic the structure of the

graded B-submodules of P (under correspondence I → IP ∼= I
⊗

A P ), moreover
the graded ideals in A correspond to the graded A–B-subbimodules in P . Similar
statements concerning the other structural isomorphisms follow from symmetry; in
particular, the structure of two-sides graded ideals of A and B are isomorphic;

4) functor T = HOMA(P,−) ∼= Q
⊗

A− : A−gr.mod −→ B−gr.mod is graded
equivalence of this categories

As consequences we obtain [6, теорема 3].
The graded Morita context define the series of impotant and interesting classes

modules in the categories of graded modules, it establishes a relationship between
graded radicals of the rings and modules, which is also the subject of investigation.
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UDC 511.3

MELLIN TRANSFORMS OF DIRICHLET L-FUNCTIONS
A. BALČIŪNAS (Vilnius, Lithuania)

aidas.balciunas@mii.stud.vu.lt

Let χ be a Dirichlet character modulo q > 1, and L(s, χ), s = σ + it, is the
corresponding L-function. In the moment problem for L-functions, the asymptotic
behavior of the quantity

∑
χ=χ (mod q)

∫ T

1

|L (σ + it, χ) |2kdt, k ≥ 0, σ ≥ 1

2
,

usually is studied as T −→∞. A more difficult moment problem is the asymptotics
or estimates for ∫ T

1

|L (σ + it, χ) |2kdt, T −→∞.

By analogy with the Riemann zeta-function, for the latter problem the method of
Mellin transforms can be applied.

The classical Mellin transform Mf (s) of a function f(x) is defined by

Mf (s) =

∫ ∞

0

f(x)xs−1dx

provided that the integral exists. Sometimes the modified Mellin transform

M∗
f (s) =

∫ ∞

1

f(x)x−sdx

is more convenient because a possible convergence problem at the point x = 0 does
not exist for it. The functions Mf (s) and M∗

f (s) are related by a simple relation. Let

f̂(x) =

{
f( 1

x
) if 0 < x 6 1,

0 otherwise .

Then it is known [1] that

M∗
f (s) = Mf̂(x)/x(s).
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Modified Mellin transforms of powers of the Riemann zeta-function ζ(s)

Zk(s) =

∫ ∞

1

∣∣∣∣ζ (1

2
+ ix

) ∣∣∣∣2kx−sdx
were introduced, studied and applied for investigation of the moments∫ T

0

∣∣∣∣ζ (1

2
+ it

) ∣∣∣∣2kdt, T →∞,

in a series of works by A. Ivič, M. Jutila and Y. Motohashi. M.Lukkarinen gave
meromorphic continuation of Z1(s) to the whole complex plane.

Let Bk stand for the k th Bernoulli number, and let γ be the Euler constant. In
[6], the following theorem has been proved.

Theorem 1. The function Z1(s) has a meromorphic continuation to the whole
complex plane. It has a double pole at point s = 1, and its Laurent expansion at this
point is

Z1(s) =
1

(s− 1)2
+

2γ − log 2π

s− 1
+ ... .

The other poles of Z1(s) are the simple poles at the points s = −(2k − 1), k ∈ N,
and

Res
s=−(2k−1)

Z1(s) =
i−2k(1− 2−(2k−1))

2k
B2k .

The papers [2]— [5] are devoted to the Mellin transform∫ ∞

1

∣∣∣∣ζ (ϱ+ ix)

∣∣∣∣2kx−sdx
with a fixed 1

2
< ϱ < 1.

In the report, will discuss the modified Mellin transform Z1(s,
1
2
, χ)

of
∣∣L (1

2
+ ix, χ

) ∣∣2 defined, for σ > 1, by

Z1(s, χ) =

∫ ∞

1

∣∣∣∣L(1

2
+ ix, χ

) ∣∣∣∣2x−sdx.
We consider meromorphic contiuanation of Z1(s,

1
2
, χ) to the whole complex plane

seperatlly for principal character χ0 and primitive character χ modulo q. Let

a(q) =
∑
p|q

log p

p− 1
,

and φ(q) denote the Euler totient function. Moreover let G(χ) denote the Gauss
sum and

E(χ) =

{
ϵ(χ) if b = 0,

ϵ1(χ) if b = 1,



Algebra and number theory: modern problems and applications 15

where
ϵ(χ) =

G(χ)
√
q
, ϵ1(χ) = −G(χ)

√
q
,

and

b =

{
0 if χ(−1) = 1,

1 if χ(−1) = −1.

Theorem 2. The function Z1(s, χ0) has a meromorphic continuation to the
whole complex plane. It has a double pole at the point s = 1, and its Laurent
expansion at this point is

Z1(s, χ0) =
φ(q)

q

(
1

(s− 1)2
+

2γ + 2a(q)− log 2π

s− 1

)
+ ... .

Other singularities are the simple poles at the points s = −(2k − 1), k ∈ N, and

Res
s=−(2k−1)

Z1(s, χ0) =
φ(q)

q

i−2k(1− 2−(2k−1))

2k
B2k .

Theorem 3. The function Z1(s, χ) has a meromorphic continuation to the whole
complex plane. It has a double pole at the point s = 1, and its Laurent expansion at
this point is

Z1(s, χ) =

=
ib

G(χ)
√
qE(χ)

q∑
a=1

χ(a)(q, a− 1)

(
1

(s− 1)2
+

2γ − log q
(q,a−1)2

− log 2π

s− 1

)
+ ... .

Other singularities are the simple poles at the points s = −(2k − 1), k ∈ N.
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SEMIGROUPS OF MINIMAL DIAGONAL RANK
I. V. Barkov (Moscow)
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A right act over a semigroup S is a set X, on which the semigroup acts via
φ : (X × S) → X, (x, s) 7→ xs and (xs)t = x(st) for any x ∈ X, s, t ∈ S. To
emphasise that X is a right S-act it is denoted by XS. A left diagonal act SX is
defined analogously. If X is both a left act over S and a right act over T it is called
a biact and denoted by SXT .

If S is a semigroup then the product S × S can be considered to be an S act [2]
if φ is an element-wise right multiplication: (a, b)s = (as, bs). This act is called a
right diagonal act over S and denoted by (S×S)S. In a similar way we define a left
diagonal act S(S × S) and a biact S(S × S)S.

A diagonal act may be considered as a unary algebra. Indeed, if (S × S)S is a
right diagonal act over S, then multiplication by s ∈ S corresponds to the unary
operation φs : S × S → S × S, (a, b) 7→ (as, bs).

Subset A ⊆ S × S is called a generating set if AS1 = S × S. If no proper subset
of A is a generating set then it is called an irreducible generating set. If A has the
minimal cardinality among all generating sets then it is called a minimal generating
set. As every diagonal act is a unary algebra then by the virtue of Theorem 1 from
[3] we get that for every right (left, bi-) act an irreducible generating set is minimal.

The cardinality of the minimal generating set of an act (S × S)S is called the
right diagonal rank of S. The left diagonal rank and the bidiagonal rank are defined
analogously. We denote them by rdrS, ldrS and bdrS respectively.

It is easy to check that groups have the minimal possible diagonal rank equal to
the cardinality of a group. The two-element right zero semigroup (which is obviously
not a group) possesses the same property, i.e. its right diagonal rank is equal 2. That
does not hold in general since the right diagonal rank of the n-element right zero
semigroup is equal to n2−n. It is only natural to ask a question about all semigroups
which satisfy this property. It has turned out that the above examples almost exhaust
all such semigroups. The full answer is given in the following theorem.

Theorem 1. Let S be a semigroup of n elements. The equality rdrS = n holds
iff S is one of the following is true:
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1. S is a group;

2. S is a two-element right zero semigroup;

3. S is a semigroup with the following Cayley table:

· e a b
e e a b
a b b b
b b b b

REFERENCES

[1] Kilp M., Knauer U., Mikhalev A. V. Monoids, acts and categories. Berlin - New
York: W. de Gruyter, 2000.
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APPROXIMATIONS
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This work is information review on the problem of the best simaltaneous dio-
phantine approximations.

The one-dimensional case

We will call the fraction a
b
, (b > 0) best approximation of the first kind to the

number α, if any cand d such that 0 < d ≤ b and a
b
neq b

d
, true∣∣∣α− a

b

∣∣∣ < ∣∣∣α− c

d

∣∣∣ . (1)

We will call the fraction fracab, (B > 0) it best approximation of the
second kind to the number alpha, if any c and d such that 0 < d leqb and
fracab neq fracbd, true

|bα− a| < |dα− c| . (2)

In terms of the distance the last condition can be written as ∥bα∥s < ∥dα∥s.
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Theorem 1. [6]. Every best approximation of the first kind to the number α has
intermediate or convergent to the continued fraction representing this number.

For the best approximation of the second kind we have the following theorem:

Theorem 2. [6].
Every best approximation of the second kind is a convergent.

For this theorem , there is the reverse :

Theorem 3. [6].
Every convergent is a best approximation of the second kind. The only exception

is α = a0 + 1
2

and p0
q0

= fraca0 1.

All these theorems (p. 169) fully reveals the value chain unit fractions. Continued
fractions are not just good approximations real numbers, and do it well.

The multidimensional case

Consider a real Euclidean space Rs. Integer lattice called the design of the form
[3, 4]

Γ =
{
m1γ

(1) +m2γ
(2) + . . .+msγ

(s)|m1, . . . , ms ∈ Z
}
, (3)

where
−→
γ(1) ;

−→
γ(2), . . . ,

−→
γ(s) linearly independent points of Rs. These points are called

basis of the lattice Γ.
The following assertions

Theorem 4. [2]. Every vertex of Klein is relative minimum of unimodular
lattice.

Theorem 5. [1]. Any two adjacent relative minimum - γ(1) = (a1, . . . , as) and
Γ(2) = (b1, . . . , bs of lattice Γ can be extended to a basis Γ, if γ(1)+γ(2)

2
/∈ Γ.

Then, by Theorem 4 (p. 18) every Diophantine approximation is a relative
minimum of the lattice Γ.

Generalize the results early in order to apply them in the next part in the
construction of an efficient algorithm for finding common approximations.

By Theorem 5 any two relative minimum lattice can be extended to a basis Γ. So
, among all relative minima can choose a basis of Γ. Any Diophantine approximation,
as shown earlier, there is a relative minimum . That is, peruse Diophantine approxi-
mations can always choose a basis of Γ. What are the advantages of such a unit basis
before? For a linear combination in which we get a new Diophantine approximation
coefficients are smaller in absolute value, i.e., the desired bust - decreases.

Thus obtained are considered to be pseudopolynomial and are more efficient than
previously known search algorithms (mean estimates [8, 9]).
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SUCCESSIVELY ORTHOGONAL SYSTEMS OF K-ARY
OPERATIONS

Galina B. Belyavskaya (Kishinev, Moldova)
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Systems of k-ary operations generalizing orthogonal sets are considered.
These systems have the following property: every k successive k-ary operations,

k ≥ 2, of the system are orthogonal.
We call these systems successively orthogonal, establish some properties, give

examples and methods of construction of these systems.
A k-ary operation A (briefly, a k-operation) on a set Q is a mapping A : Qk → Q

defined by A(xk1)→ xk+1, and in this case write A(xk1) = xk+1.
A k-groupoid (Q,A) is a set Q with one k-ary operation A, defined on Q.
The k-operation Ei : Ei(x

k
1) = xi, 1 ≤ i ≤ k, on Q is called the i-th identity

operation (or the i-th selector) of arity k.
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An i-invertible k-operation A, defined on Q, is a k-operation with the following
property: the equation A(ai−1

1 , x, aki+1) = ak+1 has a unique solution for each fixed
k-tuple (ai−1

1 , aki+1, ak+1) of Qk.
A k-tuple < Ak1 > of k-operations is orthogonal if and only if the mapping θ =

(Ak1) : Qk → Qk, (xk1) → (A1(x
k
1), A2(x

k
1), ..., Ak(x

k
1)) = (Ak1)(xk1) is a permutation

on Qk [1].
All 2-invertible binary operations, given on a set Q, form the group (Λ2; ·) under

the multiplication (A ·B)(x, y) = A(x,B(x, y)).
A k-ary quasigroup (or simply a k-quasigroup) is a k-groupoid (Q,A) such that

the k-operation A is i-invertible for each i = 1, 2, . . . , k.

Definition 1. [1] A k-tuple < A1, A2, ..., Ak >=< Ak1 > of k-operations, given
on a set Q, is called orthogonal if the system {Ai(xk1) = ai}ki=1 has a unique solution
for all ak1 ∈ Qk.

Definition 2. [1] A set {A1, A2, . . . , At}, t ≥ k, of k-operations is called
orthogonal if every k-tuple of these k-operations is orthogonal.

Definition 3. [1] A set Σ = {At1}, t ≥ 1, of k-ary operations, given on a set
Q, is called strongly orthogonal if the set Σ = {At1, Ek

1} is orthogonal.

Definition 4. A system Σ = {At1}, t ≥ k, of k-ary operations, given on a set Q,
| Q |≥ 3, is called successively orthogonal system (briefly, a SOS) if any successive
k operations are orthogonal.

Every orthogonal set of k-operations is a successively orthogonal system.
Let (Q,A) be a quasigroup, Ai(x, y) = A(x,Ai−1(x, y)), i = 2, ... .

Theorem 1. If A,A1, A2, ..., At, ... are binary quasigroups of the order s0, s1, ...
. . . , st, ..., respectively, in the group (Λ2; ·) of all 2-invertible binary operations, given
on a set Q, then the sequence

F,E,A,A2, ..., As0−1, F, E,A1, A
2
1, ..., A

s1−1
1 ,

F, E,A2, A
2
2, ..., A

s2−1
2 , ..., F, E,At, A

2
t , ..., A

st−1
t , ...

is a SOS.

Proposition 1. Let Σ1 = {A1, A2, ..., As1}, Σ2 = {B1, B2, ..., Bs2} be strongly
orthogonal sets of k-operations. Then the system

Σ3 = {E1, E2, ..., Ek, A1, A2, ..., As1 , E1, E2, ..., Ek, B1, B2, ..., Bs2}

is a SOS.
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Theorem 2. Let A be an 1-invertible k-operation on a set Q, θ = (E2, E3, ..., Ek
, A) = (Ek

2 , A), and s0 be the order of the permutation θ in the group SQk , then the
system of k-operations

E1, E2, ..., Ek, A,Aθ,Aθ
2, ..., Aθk−1, Aθk, ..., Aθs0−k−1,

E1, E2, ..., Ek, A,Aθ,Aθ
2, ..., Aθk−1, Aθk, ..., Aθs0−k−1, ...

is successively orthogonal.

Corollary 1. In the theorem 2 the k-operation Aθs0−k−1 is k-invertible.

In [2] for a function f : Qk → Q it was defined a complete k-recursive code
K(n/f (0), f (1), ..., f (n−k−1)) with the check functions: f (0) = f, f (1), ..., f (n−k−1). The
function f (i) is called the i-th recursive derivative of a function f and is defined
recursively as follows:

f (0)(xk1) = f(xk1), f (1)(xk1) = f(xk2, f
(0)(xk1)), ...,

f (i)(xk1) = f(xki+1, f
(0)(xk1), ..., f i−1(xk1)) for i < k, and

f (i)(xk1) = f(f (i−k)(xk1), f (i−k+1)(xk1), ..., f (i−1)(xk1)) for i ≥ k.

V. Izbash and P. Syrbu in [3, Proposition 2] proved that if a k-operation f is a
k-quasigroup, then f (i) = fθi, i = 1, 2, ..., where

θ : Qk → Qk, θ(xk1) = (x2, x3, ..., xk, f(xk1))

for all (xk1) ∈ Qk.
A k-quasigroup operation f (k ≥ 2) is called recursively r-differentiable if all its

k-recursive derivatives f (0), f (1), ..., f (r) are k-quasigroups [2].
A k-quasigroup we call strongly recursively r-differentiable if it is recursively r-

differentiable and r = s0−k−1, where s0 is the order of the permutation θ = (Ek
2 , A).

In this case A(r+1) = E1. For the binary case this notion was introduced in [4].
From Theorem 2 we obtain the following corollary for any 1-invertible k-function

f .

Corollary 2. If f is an 1-invertible k-function, then
f (i) = fθ(i), i = 1, 2, ..., where θ = (Ek

2 , f).
The sequence of the recursive derivatives has the form
E1, E2, ..., Ek, f, fθ, fθ

2, ..., fθk−1, fθk, ..., fθs0−k−1,
E1, E2, ..., Ek, f, fθ, fθ

2, ..., fθk−1, fθk, ..., fθs0−k−1, ...,
where s0 is the order of the permutation θ.
If f is an r-differentiable k-quasigroup, then r ≤ s0 − k − 1.
If a k-quasigroup is strongly recursively r-differentiable, then r = s0 − k − 1.
For an 1-differentiable k-quasigroup s0 ≥ k + 2.

Theorem 3. Let a permutation (Ek
2 , A) have the order s0, then a successively

orthogonal system of Theorem 2 contains s0 different k-operations.
If s0 = k + 1, then the k-operation A is a quasigroup k-operation.
For any 1-invertible k-operation s0 ≥ k + 1.
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Theorem 4. Let A,A1, ..., At, ... be 1-invertible k-operations and the permuta-
tions θ = (Ek

2 , A), θ1 = (Ek
2 , A1),..., θt = (Ek

2 , At),... have the order s0, s1, ..., st, ...
respectively, then the system

E1, E2, ..., Ek, A,Aθ,Aθ
2, ..., Aθk−1, Aθk, ..., Aθs0−k−1,

E1, E2, ..., Ek, A1, A1θ1, A1θ
2
1, ..., A1θ

k−1
1 , A1θ

k
1 , ..., A1θ

s1−k−1
1 , ...,

E1, E2, ..., Ek, At, Atθt, Atθ
2
t , ..., Atθ

k−1
t , Atθ

k
t , ..., Atθ

st−k−1
t , ...

is a SOS.

Proposition 2. Any orthogonal set of k-operations can be continued to a SOS.
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Abelian group epimorphisms, which nearly preserve some properties of the group
classes, are of considerable interest. The reason for that is the opportunity to extend
the known results to the new classes of group epimorphic images. In this sense the
classification and non-isomorphic direct decomposition constructions deserve to be
generalized from the class of almost completely decomposable groups to some groups
of countable ranks and their special epimorphic images.

We consider class C0 of block-rigid local almost completely decomposable groups
with generally cyclic regulator quotient of countable rank.
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Definition 1. A torsion-free abelian group X belongs to the class C0, if it
contains a block-rigid completely decomposable subgroup R(X) of countable rank
such that its canonical decomposition R(X) =

⊕
τ∈Tcr(R(X))

Aτ satisfies the following

conditions:

1. Aτ is a finite rank pure subgroup of X for each τ ∈ Tcr(R(X));

2. X/R(X) =
⊕
p∈PX

TXp for some set PX of primes and cyclic p-primary groups

TXp with exp(TXp ) = pnp(X);

3. for every p ∈ PX the set {q ∈ PX : [TXp ] ∩ [TXq ] ̸= ∅} is finite; here [TXp ]
coincides with the minimal subset Tp ⊂ Tcr(R(X)), such that

TXp ⊆ ((
⊕
τ∈Tp

Cτ )
X
∗ +R(X))/R(X).

From now on, V X
∗ = {g ∈ X : there is n ∈ N, with ng ∈ V } denotes the

purification of V in X, (W )p is a p-primary component of torsion group W , direct
sum of l summands isomorphic to A is denoted by Al.

Definition 2. ([1] - [3]). Let X and Y be torsion-free abelian groups. Then
X and Y are said to be nearly isomorphic, X ∼=nr Y , if for any prime number p
there exist monomorphisms Φp : X → Y and Ψp : Y → X such that

1. Y/XΦp and X/YΨp are torsion groups;

2. (Y/XΦp)p = 0 = (X/YΨp)p;

3. for any finite rank pure subgroups X ′ ⊆ X and Y ′ ⊆ Y the quotients
(X ′Φp)

Y
∗ /X

′Φp and (Y ′Ψp)
X
∗ /Y

′Ψp are finite groups.

Theorem 1. ([1]). Let X, Y ∈ C0. Then groups X and Y are nearly isomor-
phic if and only if their endomorphism rings are isomorphic, End(X) ∼= End(Y ).

Let us consider a class of groups, which are special epimorphic images of groups
from C0:

Definition 3. ([2, Definition 5.1]).
Let X be a group from the class C0 and (ατ : τ ∈ T) be integers such that the

following conditions hold:

(1.) R(X) =
⊕

i∈ω A
li
i (li ∈ N) with T =

∪
i∈ω Ti the disjoint union of finite subsets

Tcr(Ai) = Ti ⊂ T and rkAi = |Ti| ̸= 2 for any i ∈ ω;

(2.) for any i ∈ ω and any τ ∈ Ti there exists a prime p such that τ(p) = ∞ and
σ(p) ̸=∞ for all σ ̸= τ , σ ∈ Ti;
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(3.) if i ∈ ω and |Ti| ̸= 1 then
∩
τ ̸=σ,τ∈Ti τ = Z for any σ ∈ Ti;

(4.) if i ∈ ω and |Ti| ̸= 1 then each ατ (τ ∈ Ti) is not p-divisible if σ(p) =∞ for
some σ ∈ Ti; if |Ti| = 1 then ατ = 0 with Ti = {τ};

(5.) if i ∈ ω and |Ti| ̸= 1 then gcd({ατ | τ ̸= σ, τ ∈ Ti}) = 1 for any σ ∈ Ti;

(6.) if there exists i ∈ ω with τ ∈ Ti and σ ∈ Ti then gcd(mτ (X),mσ(X)) = 1;

(7.) if there exists i ∈ ω with τ ∈ Ti and σ ∈ Ti then ατ is relatively prime to
mσ(X);

(8.) if there exists i with τ ∈ Ti and σ ∈ Ti then τ(p) ̸=∞ for any prime divisor p
of mσ(X).

Let K =
⊕

i∈ωK
li(Ai) ⊂ X with K(Ai) = ⟨

∑
τ∈Ti ατaτ ⟩ ⊂ Ai =

⊕
τ∈Ti τaτ .

Then B = X/K will be called a proper B(1)alr-group.

The combinatorial (graphical) theory constructed in [3] for the so-called "almost
rigid groups" from class C0 describes their direct decompositions up to near isomor-
phism and serves as the basis of an analogous theory for the class of proper B(1)alr-
groups, see [2, Theorem 5.13]. However, endomorphism rings of the latter are so poor
that there is no possibility of determining the groups themselves. Analyzing these
facts we come to the combinatorial non-isomorphic direct decomposition theory of
torsion-free abelian groups with relatively simple endomorphism ring structures.
Note that these endomorphism rings also admit non-isomorphic decompositions as
their properties are tightly connected with those of groups themselves.

REFERENCES

[1] E. Blagoveshchenskaya. Determination of a class of countable rank torsion-
free abelian groups by their endomorphism rings // Journal of Mathematical
Sciences, vol. 152 , # 4, p. 469 – 478, 2008.
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[3] E. Blagoveshchenskaya, R. Göbel. Classification and direct decompositions of
some Butler groups of countable rank // Comm. in Algebra 30, # 7, p. 3403 –
3427, 2002.

Petersburg State Transport University
St. Petersburg State Polytechnical University



Algebra and number theory: modern problems and applications 25

UDC 512.5

ON SUBVARIETY OF VARIETY GENERATED BY A
SIMPLE INFINITE LIE ALGEBRA OF CARTAN TYPE

GENERAL SERIES W2

О. А. Bogdanchuk (Ulyanovsk)
bogdanchuk_o_a@mail.ru

The necessary background was stated in monographs [1], [2]. Characteristic of
main field Φ is equal to zero.

Let Rk = Φ[t1, t2, . . . , tk] be the polynomial ring in variables t1, t2, . . . , tk. Denote
by Wk simple infinite Lie algebra of Cartan type general series, where k = 1, 2, . . ..
Recall that Wk include first order differential operator of the form

∑k
i=1 fi∂i, where

∂i is operator of taking the partial derivative with respect to ti, and fi ∈ Rk, i =
1, . . . , k. Let Wk denote variety generated by the corresponding algebra. It is well
known that exponent of variety W1 is equal to 4. At the same time, variety W2 has
fractional exponent. This result was proved in [3]:

13, 1 < LEXP (W2) 6 HEXP (W2) < 13, 5.

In paper [4] was constructed an infinite series of Lie algebras Ls, where s = 3, 4, . . . ,
with different fractional exponents its codimensions growth. More precisely: For the
varieties of Lie algebras Ls, s = 3, 4, . . . , over field of zero characteristic the following
strict inequalities hold

3 = EXP (L3) < . . . < EXP (Ls) < EXP (Ls+1) < . . . < 4 , where s = 4, 5, . . . .

Lie algebras Ls, where s = 3, 4, . . . , do not belong to the variety W1, because
standard Lie identity of five degree is not satisfied in Ls, but, as well known, it is
holds in W1. Appeared that considered series of algebras belong to variety W2.

Theorem 1. Discrete series of Lie algebras Ls with different fractional exponents
codimension growth belongs the variety generated by a simple infinite Lie algebra of
Cartan type general series W2.
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ON ALGEBRAS OF RELATIONS WITH OPERATION OF
DOUBLE CYLINDROFICATION
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A set of binary relation Φ closed with respect to some collection Ω of operations
on relations forms an algebra (Φ,Ω) called an algebra of relations. Each such algebra
can be considered to be partially ordered (Φ,Ω,⊂) by the relation of set-theoretic
inclusion ⊂.

Tarski A. was the first to treat algebras of relations from the point of view of
universal algebra [1]. He considered algebras of relations with the following opera-
tions: Boolean operations ∪,∩, −, operations of relation product ◦, relation inverse
−1, and constant operations: ∅ (empty set), ∆ (diagonal relation), U ×U (universal
relation). Now, the theory of algebras of relations is an essential part of algebraic
logic [2] and modern algebra [3].

For any set Ω of operations on binary relations, let R{Ω} (R{Ω,⊂}) denote the
class of all algebras (partially ordered algebras) isomorphic to ones whose elements
are binary relations and whose operations are members of Ω. Let Q{Ω} (Q{Ω,⊂})
be the quasivariety and V ar{Ω} (V ar{Ω,⊂}) be the variety generated by R{Ω}
(R{Ω,⊂}).

In the investigation of algebras of relations, the following problems naturally
arise:

1. Find a basis of identities for the variety V ar{Ω}. Find out whether this variety
is finitely based.

2. Find a basis of quasiidentities for the quasivariety Q{Ω}. Find out whether this
quasivariety is finitely based. Find out whether this quasivariety forms a variety.

3. Find a system of elementary axioms (abstract characterization) for the class
R{Ω}. Find out whether this class is finitely axiomatizable. Find out whether this
class forms a quasivariety (variety).

Similar problems can be formulated for partially ordered algebras.

As a rule, operations on relations are defined by formulas. These operations are
called logical. One of the most important classes of logical operations on relations is
the class of Diophantine operations [4,5] (in other terminology – primitive-positive
operations [6]). An operation on relations is called Diophantine if it can be defined by
a first order formula containing in its prenex normal form only existential quantifiers
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and conjunctions. It is easy to see that the operation of relation product ◦, relation
inverse −1, and intersection ∩ are Diophantine operations. Equational and quasiequa-
tional theories of algebras of relations with Diophantine operations are described in
[4, 5, 7].

A Diophantine operation is called atomic if it can be defined by a first order
formula containing in its prenex normal form only existential quantifiers. It is clear
that such formulas contain only one atomic subformula. Hence atomic operations
are unary operations. There exist nine atomic operations (excepting identical).

We concentrate our attention on the Diophantine operation of relation product ◦
and on the atomic operation of double cylindrification ∇ that are defined as follows.
For any relations ρ and σ on U , put

ρ ◦ σ = {(u, v) : (∃w)(u,w) ∈ ρ(w, v) ∈ σ},
∇(ρ) = {(u, v) : (∃w, z)(w, z) ∈ ρ}.

Note that ∇(∅) = ∅, and ∇(ρ) = U × U if ρ ̸= ∅.
The main results are formulated in the following theorems.

Theorem 1. An algebra (A, ·, ∗) of the type (2, 1) belongs to the variety
V ar{◦,∇} if and only if it satisfies the identities:

(xy)z = x(yz), x∗∗ = x∗, (x∗)2 = x∗, x∗y∗ = y∗x∗,

x∗(xy)∗ = (xy)∗y∗ = (xy)∗, (xy∗z)∗ = x∗y∗z∗ = x∗yz∗,

xyz∗ = xyx∗z∗, x∗yz = x∗z∗yz.

Theorem 2. The quasivariety Q{◦,∇,⊂} forms a variety in the class of all
partially ordered algebras of the type (2, 1). A partially ordered algebra (A, ·, ∗,≤) of
the type (2, 1) belongs to the quasivariety Q{◦,∇,⊂} if and only if it satisfies to the
conditions of Theorem 1 and the identities:

x ≤ xx∗x, xy ≤ xx∗, xy ≤ y∗y.

Theorem 3. The class R{◦,∇,⊂} does not form a quasivariety. A partially
ordered algebra (A, ·, ∗,≤) of the type (2, 1) belongs to the class R{◦,∇,⊂} if and
only if it satisfies to the conditions of Theorem 2 and the axioms:

x∗ = y∗ ∨ x∗y∗z = zx∗y∗ = x∗y∗, x∗ = y∗ ∨ x∗y∗ ≤ z.

Theorem 4. The quasivariety Q{◦,∇,∩} forms a variety. An algebra (A, ·, ∗,∧)
of the type (2, 1, 2) belongs to the quasivariety Q{◦,∇,∩} if and only if it satisfies
to the following conditions:

a) (A,∧) is a semilattice with the canonical partial order relation ≤ that is
compatible with operations · and ∗.

b) (A, ·, ∗,≤) satisfies to the conditions of Theorem 2;
c) the following identities hold

x∗y∗ = x∗ ∧ y∗, x(y ∧ z∗z) = xy ∧ z∗z, x(y ∧ zz∗) = xy ∧ zz∗,
(xx∗ ∧ y)z = xx∗ ∧ yz, (x∗x ∧ y)z = x∗x ∧ yz.
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Theorem 5. The class R{◦,∇,∩} does not form a quasivariety. An algebra
(A, ·, ∗,∩) of the type (2, 1, 2) belongs to the class R{◦,∇,∩} if and only if it satisfies
to the conditions of Theorem 4 and the axioms from the Theorem 3.
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CORNER BOUNDARY LAYER IN NONLINEAR
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In the rectangular domain the first boundary value problem is considered for a
singularly perturbed elliptic equation

ε2∆u− εαA(x, y)
∂u

∂y
= F (u, x, y, ε)

with a nonlinear on u function F . Uniform in a closed rectangle the complete
asymptotic expansion of the solution is constructed for α > 1. If 0 < α < 1,
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then the uniform asymptotic approximation is constructed in the zero and first
approximation.

Keywords: boundary layer, singularly perturbed equation, asymptotic expansion.
Bibliography: 8 titles.

In [1–3] in the rectangular domain Ω := {(x, y) | 0 < x < a, 0 < y < b} it is
studied the linear problem

ε2∆u− εαA(x, y)
∂u

∂y
− k2(x, y)u = f(x, y, ε), (x, y) ∈ Ω, (1)

u(x, y, ε) = ϕ(x, y), (x, y) ∈ ∂Ω, (2)

where ∂Ω is the boundary of the rectangle Ω, ε is a small positive parameter, ∆ is
the Laplace operator.

In [1] we considered the case A(x, y) ≡ 0 for which it is shown that a complete
asymptotic expansion of the solution, uniform in a closed rectangle Ω̄, consists of
a regular part, of four boundary parts and four corner boundary layer parts (in
accordance with the four sides and four vertices of the rectangle).

In [2] a more complex case A(x, y) > 0 in Ω̄ and α = 0 is considered for which
it is also shown that the asymptotic expansion of the solution consists of regular
and boundary layer parts. However, there is a significant factor associated with the
construction of the asymptotic behavior of arbitrary order. In particular, we must
consider parabolic equations (parabolic boundary layer) to describe the boundary
layer in the neighborhood of the vertical sides of the rectangle x = 0 and x = b. For
example, in the neighborhood of the side x = 0 boundary layer operator has the
form

∂2

∂ξ2
− A(0, y)

∂u

∂y
− k2(0, y), ξ =

x

ε
.

The emergence of a parabolic boundary layer is related to the fact that the
vertical sides of the rectangle are the characteristics of a degenerate operator

−A(x, y)
∂

∂y
− k2(x, y).

In determining the parabolic boundary of ε2 and higher order functions, unlimi-
ted members appear in the right-hand sides of equations. To construct a uniform in
Ω̄ asymptotic solution it is necessary to impose certain restrictive conditions on the
f and ϕ functions.

In [3] a more complicated case A(x, y) > 0 in Ω̄ and α > 0 is considered.
Depending on the order of magnitude of εα the boundary layer part of asymptotic is
constructed differently. If α ≥ 1, the boundary layer structure of the solution is the
same as in [1]. If 0 < α < 1, the boundary layer structure of the solution changes
significantly. Uniform asymptotic approximation in the rectangle Ω̄ can be obtained
only in the zero and first approximation.
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Developed in [4–8] method allowed to justify the uniform asymptotic solution
of the problem (1), (2) in case contrast to [1] function f is nonlinear on u. It was
viewed the equation

ε2∆u = F (u, x, y, ε), (x, y) ∈ Ω, (3)

with the boundary condition (2) and nonlinear F (u, x, y, ε) function on u. The
construction of regular and the boundary layer parts of the asymptotic solution
did not cause additional difficulties in comparison with the linear case. However,
while constructing a corner boundary layer, we had to consider nonlinear elliptic
equations of the same type as (3).

In this paper the methods of [1–8] works are applied to the equation

ε2∆u− εαA(x, y)
∂u

∂y
= F (u, x, y, ε) (4)

with the boundary condition (2), nonlinear F (u, x, y, ε) function on u and a rational
number α = γ/β. For the problem (4), (2) a solution in the form of a series in powers
of ε1/β can be constructed. This solution consists of three parts:

u(x, y, ε) = ū+ Π + P,

where ū is a regular part, Π is a boundary functions that play a role near the sides
of the Ω rectangle, P is corner boundary functions that play a role near the vertices
of the Ω rectangle. For the case α > 1, we can construct a complete asymptotic
expansion of the solution, uniform in the Ω̄ rectangle. For the case 0 < α < 1, we
can construct a uniform in Ω̄ asymptotic approximation only on the first order. In
all cases the qualitative character of the asymptotic behavior is the same as in cases
where the F (u, x, y, ε) function is linear on u.
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Let s = σ + it be a complex variable, and λ ∈ R be a fixed parameter. The
periodic zeta-function ζλ(s) is defined, for σ > 1, by the Dirichlet series

ζλ(s) =
∞∑
m=1

e2πiλm

ms
,

and by analytic continuation elsewhere. For λ ∈ Z, the function ζλ(s) reduces to the
Riemann zeta-function ζ(s). Moreover,

ζλ(s) = e2πiλL(λ, 1, s),

where, for 0 < α ≤ 1,

L(λ, α, s) =
∞∑
m=0

e2πiλm

(m+ α)s
, σ > 1,
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is the Lerch zeta-function. Since the function e2πiλm is periodic with minimal period
1, we may assume that 0 < λ ≤ 1.

We consider the mean square and the fourth power moment of the function ζλ(s).
The first problem deals with Atkinson type formula for

Eσ(q, T ) =

q∑
a=1

∫ T

0

|ζa
q
(σ + it)|2dt− qζ(2σ)T − ζ(2σ−1)Γ(2σ−1) sin(πσ)

1− σ
(qT )2−2σ,

where a and q are integers, 1 ≤ a ≤ q. Let c1T < N < c2T , where c1 < c2,

N1 = N1(q, T,N) = q

 T

2π
+
qN

2
−

((
qN

2

)2

+
qNT

2π

) 1
2


and σα(m) =

∑
d|m d

α. Define

∑
1
(q, T ) = 2σ−1q1−σ

(
T

π

) 1
2
−σ ∑

m≤N

(−1)qmσ1−2σ(m)

m1−σ

×
(

arsinh

(√
πqm

2T

))−1(
T

2πqm
+

1

4

)− 1
4

× cos

(
2Tarsinh

(√
πqm

2T

)
+
√

2πqmT + T 2q2m2 − π

4

)
and

∑
2
(q, T ) = −2q1−σ

(
T

2π

) 1
2
−σ ∑

m≤N1

σ1−2σ(m)

m1−σ

(
log

(
qT

2πm

))−1

× cos

(
T log

(
qT

2πm

)
− T +

π

4

)
.

Theorem 1. Suppose that σ, 1
2
< σ < 3

4
, is fixed. Then, for q ≤ T ,

Eσ(q, T ) =
∑

1
(q, T ) +

∑
2
(q, T ) +R(q, T ),

where R(q, T ) = O(q
7
4
−σ log T ), with the O - constant depending only on σ.

Next we study the mean square of Eσ(q, T ).
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Theorem 2. Suppose that σ, 1
2
< σ < 3

4
, is fixed. Then, for T → ∞ and

q ≤ T 1− 4σ
3 ,

∫ T

2

E2
σ(q, t)dt = 2(5− 4σ)−1(2π)2σ−

3
2 q

3
2
−2σT

5
2
−2σ

∞∑
m=1

σ2
1−2σ(m)

m
5
2
−2σ

+O(q
11
4
−2σT

7
4
−σ log T ).

If q = 1, then Theorems 1 and 2 give the results of [2].
An analogue of the Theorem 2 is also true for σ = 1

2
. Let

E(q, T ) =

q∑
a=1

∫ T

0

∣∣∣∣ζa
q

(
1

2
+ it

)∣∣∣∣2 dt− qT (log
qT

2π
− 2γ0 − 1

)
,

where γ0 is the Euler constant, and d(m) =
∑

d|m 1.

Theorem 3. For T →∞ and q ≤ T
1
3 ,∫ T

2

E2(q, t)dt =
2
√
qT

3
2

3
√

2π

∞∑
m=1

d2(m)

m
3
2

+O(T
5
4 q

7
4 log4 T ).

If q = 1, then Theorem 3 contains the results of [1].
Now we will consider the fourth power moment of ζλ(s) in the critical strip. We

have the following results.

Theorem 4. Suppose that λ is irrational, 0 < λ < 1, 1
2
< σ < 1 and T → ∞.

Then, for every ε > 0,∫ T

1

|ζλ(σ + it)|4dt

= T

(
ζ4(2σ)

ζ(4σ)
− 2

∑
m1n1=m2n2

sin2 πλ(m1 + n1 −m2 − n2)

(m1n1)2σ

)
+O(T

3
2
−σ+ε).

The case of rational λ is more complicated, and we have only the following
analogue of Theorem 4.

Theorem 5. Suppose that the number λ is rational, 0 < λ < 1, 3
4
< σ < 1 and

T →∞. Then, for every ε > 0,∫ T

1

|ζλ(σ + it)|4dt

= T

(
ζ4(2σ)

ζ(4σ)
− 2

∑
m1n1=m2n2

sin2 πλ(m1 + n1 −m2 − n2)

(m1n1)2σ

)
+O(T

7
4
−σ+ε).

Theorems 4 and 5 are generalizations of the known results for the Riemann
zeta-function.



34 XII International conference

REFERENCES

[1] Heath-Brown D. R. The mean value theorem for the Riemann zeta- function
// Mathematika. 1978. V. 25 P. 177-184.

[2] Matsumoto K. The mean square of the Riemann zeta-function in the critical
strip // Japan J. Math. 1989. V. 15. No 1. P. 1-13.

Vilnius University

UDC 511.34

ON POLYADIC NUMBERS AND POLYADIC
EXPANSIONS

V. G. Chirskii (Moscow)
vgchirskii@yandex.ru

The ring of polyadic integers is a direct product of the rings of p-adic integers
over all primes p. The elements of it have canonical representation of the form

∞∑
n=1

an · n!, 0 6 an 6 n.

The ring of polyadic integers was introduced by H. Prufer and was investigated by
A. G. Postnikov and E. V. Novoselov. The author considered E. Bombieri’s notion
of a global relation and studied the arithmetic properties of the series analogous to
the given above.

The report presents the results of the author and some other mathematicians on
the properties of such series and the properties of the so called polyadic expansions.
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Define a sequence
{
F

(g)
i

}
by the recurrence relation

F
(g)
i+2 = gF

(g)
i+1 + F

(g)
i ,

1The work is partially supported by RFBR, grant N 11-01-00578-а.
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where i > 0. The initial conditions are F (g)
0 = 1, F (g)

1 = g for g = 1, 2, 3, . . .. This
sequence can be considered as a generalised Fibonacci sequence.

Any nonnegative integer n can be represented as a sum of different numbers from
this sequence

n =
k∑
i=0

εi(n)F
(g)
i ,

where ε0(n) can equals 0, 1, . . . , g′. Here g′ = g−1 if i = 0 and g′ = g if i ≥ 1. Besides,
for 0 6 i 6 k − 1 from εi+1(n) = g follows that εi(n) = 0. Thus representation is
called the representation of n in generalised Fibonacci numeration system.

A tuple (ε0, . . . , εl) such that 0 ≤ εi ≤ g′ εi = 0 if εi+1 = g and 0 6 i 6 l − 1, is
called g-admissible. For any g-admissible tuple (ε0, . . . , εl) consider a set

F(g) (ε0, . . . , εl) = {n ∈ Z : n ≥ 0, ε0(n) = ε0, . . . , εl(n) = εl} .

Sets F(g) (ε0, . . . , εl) consist of nonnegative integers with fixed l+ 1 last digits of
their representation in generalised Fibonacci numeration system.

Sets F(g) (ε0, . . . , εl) are special cases of so called quasilattices. Recently there
some woks devoted to number-theretic problems over quasylattices [3], [4].

Particularly, in [2] solutions of linear additive problem, Lagrange four squares
problem, and ternary Goldbach problem over F(ε1, . . . , εl), are obtained.

Consider the function χ(n) defined by

χ(n) = {(n+ 1)τg} ,

where {x} is a fractional part of x, and τg =

√
g2+4−g

2
. Consider the set

X (ε0, . . . , εl) = {χ(n) : n ∈ F(g) (ε0, . . . , εl)}.

The following geometrization theorem is holds.

Theorem 1. For any g-admissible touple (ε0, . . . , εl) the set X (ε0, . . . , εl) is
a segment [{−aτ}; {−bτ}], where a, b are effectively determined integers with 0 6
a, b < F

(g)
l + F

(g)
l+1.

As an application of the geometrization theorem we solve analogues of some
classic problems of number theory over sets F(g)(ε0, . . . , εl).

Assume that

AN(ε0, . . . , εl) = ♯{n : 1 6 n 6 N,n ∈ F(g)(ε0, . . . , εl)}.

In other words AN(ε0, . . . , εl) is a number of positive integers with fixed l + 1 last
digits of their representation in generalised Fibonacci numeration system.
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Theorem 2. For any positive integer N we have

AN(ε0, . . . , εl) = ρ(ε0, . . . , εl)N +O(1),

where

ρ(ε0, . . . , εl) =

{
τ l, if εl = 0,

τ l+1 + τ l, if εl = 1.

Denote by As,qN (ε0, . . . , εl) a number of positive integers, that less or equal N ,
belong to F(g)(ε0, . . . , εl), and members of the arythmetic progression st + q, with
s, t ∈ N, q ∈ Z, 0 6 q 6 s− 1, i.e.

As,qN (ε0, . . . , εl) = ♯{n : 1 6 n 6 N, n ∈ F(g)(ε0, . . . , εl), n = st+ q}.

Theorem 3. For fixed s and any natural N we have an asymptotic formula

As,qN (ε0, . . . , εl) = ρ(ε0, . . . , εl)
N

s
+O

(
ln
N

s

)
.

Let π(ε0, . . . , εl;n)be a number of primes not exceeding n from F(g)(ε0, . . . , εl),
and π(n) be a number of primes not exceeding n.

Theorem 4. The set F(g)(ε0, . . . , εl) contains infinitely many prime numbers.
Moreover

π(ε0, . . . , εl;n) = ρ(ε0, . . . , εl)π(n)(1 + o(1)).

Denote by sm(ε0, . . . , εl;n) a number of solutions of the equation

n1 + n2 + . . .+ nm = n,

where ni ∈ F(g)(ε0, . . . , εl), i = 1, 2, . . . ,m.

Theorem 5.

sm(ε0, . . . , εl;n) = cm (ε0, . . . , εl, {nτ})nm−1 +O
(
nm−2 lnn

)
,

where cm (ε0, . . . , εl, δ) is some effectively computable continuous function that are
piecewise polynom of degree m− 1 in δ.

Ternary Goldbach problem asks to solve an equation

p1 + p2 + p3 = n,

where n is an odd natural number and p1, p2, p3 are prime numbers.
Let ν(ε0, . . . , εl;n) be a number of solutionsof this equation with supplimentary

condition pi ∈ F(g)(ε0, . . . , εl), i = 1, 2, 3.
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Theorem 6.

ν(ε0, . . . , εl;n) = Q3,1(n)σ(n, a, b) +O
(
n2 lnC n

)
,

where
Q3,1(n) =

n2

2 ln3 n

∏
p

(
1 +

1

(p− 1)3

)∏
p|n

(
1− 1

p2 − 3p+ 3

)
,

σ(n, a, b) =
∑

|m|<∞

e2πim(τn−1,5(a+b))
sin3 πm(b−a)

π3m3 ,

and a, b are some effectively computable numbers from Z[τ ].
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galina_deryabina@mail.ru alexei@unb.br

This talk is based on the paper [5] and on the preprint [2].
Let Z⟨X⟩ be the free unital associative ring freely generated by an infinite

countable set X = {xi | i ∈ N}. We define a left-normed commutator [x1, x2, . . . , xn]
by [a, b] = ab − ba, [a, b, c] = [[a, b], c]. For n > 2, let T (n) be the two-sided ideal
in Z⟨X⟩ generated by all commutators [a1, a2, . . . , an] (ai ∈ Z⟨X⟩). Note that the
quotient ring Z⟨X⟩/T (n) is the universal Lie nilpotent associative ring of class n− 1
generated by X.
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It is clear that the quotient ring Z⟨X⟩/T (2) is isomorphic to the ring Z[X] of
commutative polynomials in x1, x2, . . . . Hence, the additive group of Z⟨X⟩/T (2)

is free abelian and its basis is formed by the (commutative) monomials. Recently
Bhupatiraju, Etingof, Jordan, Kuszmaul and Li [1] have proved that the additive
group of Z⟨X⟩/T (3) is also free abelian and found explicitly its basis [1, Prop. 3.2].

The aim of the present talk is to describe the additive group A of the ring
Z⟨X⟩/T (4). Our principal results are as folows.

Theorem 1. Let A be the additive group of Z⟨X⟩/T (4). Then A = B⊕C where
B is a free abelian group and C is an elementary abelian 3-group.

More precisely, let T (3,2) be the two-sided ideal of the ring Z⟨X⟩ generated by all
elements [a1, a2, a3, a4] and [a1, a2][a3, a4, a5] where ai ∈ Z⟨X⟩. Clearly, T (4) ⊂ T (3,2).

Theorem 2. The additive group of T (3,2)/T (4) is an elementary abelian 3-group
and the additive group of the quotient Z⟨X⟩/T (3,2) is free abelian.

It follows from Theorems 1 and 2 that the additive group of Z⟨X⟩/T (4) is a direct
sum B ⊕ C where C = T (3,2)/T (4) is an elementary abelian 3-group and B is a free
abelian group isomorphic to the additive group of Z⟨X⟩/T (3,2).

We describe explicitly a Z/3Z-basis of C. Let

E =
{
xj1 . . . xjl [xi1 , xi2 ] . . . [xi2k−1

, xi2k ][xi2k+1
, xi2k+2

, xi2k+3
] |

l > 0, k > 1, j1 6 j2 6 . . . 6 jl; i1 < i2 < · · · < i2k+3

}
.

Theorem 3. The set {e + T (4) | e ∈ E} is a basis of the elementary abelian
3-group C = T (3,2)/T (4) over Z/3Z.

Note that a description of a Z-basis of the free abelian group B ≃ Z⟨X⟩/T (3,2)

can be deduced from the results of either [3] or [4] or [6] or [7]; this basis is explicitly
written in [5, Lemma 5.6].

Let

D′
0 = {1}, D′

1 = {[xi1 , xi2 ] | i1 < i2}, D′
2 = {[xi1 , xi2 , xi3 ] | i1 < i2, i1 6 i3},

D′
3 = {[xi1 , xi2 ][xi3 , xi4 ] | i1 < i2, i3 < i4, i1 6 i3; if i1 = i3 then i2 6 i4},
D′

4 = {[xi1 , xi2 ][xi3 , xi4 ] . . . [xi2k−1
, xi2k ] | k > 3, i1 < i2 < · · · < i2k}.

Let D′ = D′
0 ∪ D′

1 ∪ D′
2 ∪ D′

3 ∪ D′
4. Let

D = {xi1xi2 . . . xikd′ | k > 0, i1 6 i2 6 . . . 6 ik, d
′ ∈ D′}.

Theorem 4 (see [3, 4, 6, 7]). The set {d + T (3,2) | d ∈ D} is a basis of
Z⟨X⟩/T (3,2) ≃ B over Z.

In the proof we use the following result that may be of independent interest.
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Theorem 5. Let K be an arbitrary unital associative and commutative ring and
let K⟨Y ⟩ be the free associative K-algebra on a non-empty set Y of free generators.
Let T (4) be the two-sided ideal in K⟨Y ⟩ generated by all commutators [a1, a2, a3, a4]
(ai ∈ K⟨Y ⟩). Then the ideal T (4) is generated by the polynomials

[y1, y2, y3, y4] (yi ∈ Y ), (1)
[y1, y2, y3][y4, y5, y6] (yi ∈ Y ), (2)

[y1, y2][y3, y4, y5] + [y1, y5][y3, y4, y2] (yi ∈ Y ), (3)
[y1, y2][y3, y4, y5] + [y1, y4][y3, y2, y5] (yi ∈ Y ), (4)

([y1, y2][y3, y4] + [y1, y3][y2, y4])[y5, y6] (yi ∈ Y ). (5)

Note that 3 [y1, y2][y3, y4, y5] ∈ T (4) for all yi ∈ Y ; one can deduce this from the
results of [3, 4, 7], see also [5, Corollary 2.4]. Hence, if 1

3
∈ K then all polynomials

[y1, y2][y3, y4, y5] (yi ∈ Y ) (6)

belong to T (4). Since the polynomials (2)–(4) belong to the ideal generated by the
polynomials (6), Theorem 5 implies the following corollary that has been proved in
[3, 7].

Theorem 6 (see [3, 7]). If 1
3
∈ K then T (4) is generated as a two-sided ideal of

K⟨Y ⟩ by the polynomials (1), (5) and (6).
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In the papers [5]–[7] some directions for the future research in Korobov’s number-
theoretic method in approximate analysis were given. In this paper, we will discuss
unsolved problems of the theory of the lattice hyperbolic zeta function. This function
is defined in the right semiplane α > 1 by the zeta-series2

ζ(Λ|α) =
∑′

x⃗∈Λ

(x1 . . . xs)
−α.

Problem of the right order. As is known ([4]), the lattice hyperbolic zeta func-
tion has the right order of decreasing on the class of algebraic lattices as a deter-
minant of lattice grows. Moreover, there is an asymptotic formula for these
lattices. From continuity of the hyperbolic zeta function on the lattice space
follows that the right order of decreasing of the lattice hyperbolic zeta function
is achievable on the class of rational lattices. Indeed, it is sufficient to consider
rational lattices from small neighborhoods of algebraic lattices. A natural
question arises: is the right order of decreasing achievable on integer lattices
or not? If it is achievable then we must provide an algorithm for construction
of optimal parallelepipedal nets such that the right order of approximate
integration error on the classes Eα

s is achieved on them. In other words,
in this case we must construct an algorithm for calculation of a module
N and optimal coefficients modulo N such that ζ(Λ(1, a1, . . . , as−1;N)|α) =

O
(

lns−1N
Nα

)
, (α > 1). If the right order of decreasing is not achievable on integer

lattices, then for algebraic lattices we obtain some type of analog of the Liou-
ville—Thue—Sigel—Roth theorem ([10]), because this means that we cannot
approximate algebraic lattices by integer lattices.

1This research was partially supported by the RFBR grant №11-01-00571a
2∑′ means that x⃗ = 0⃗ is excluded from summation
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Analytic continuation existence problem. As is shown in the papers [6], [7]
there is an analytic continuation of the hyperbolic zeta function of any Carte-
sian lattice. Moreover, for any Cartesian lattice a functional equation for the
explicit form of such an analytic continuation was obtained ([6]). Natural
questions arise about existence of an analytic continuation of the hyperbolic
zeta function or an explicit form of such a continuation in the following cases:

for S. M. Voronin lattices Λ(F, q), where F is an arbitrary algebraic field
of order s over the field of rational numbers Q, q is a prime number, and an
integer lattice Λ(F, q) corresponds to an ideal L ⊂ ZF with norm N(L) =
q, if the fundamental lattice Zs corresponds to the ring ZF of the integer
algebraic numbers of the field F . S. M. Voronin and his disciple N. Temir-
galiev considered the case of the ring of integer Gaussian numbers and the
case of circular fields (see the papers [1], [2], [3], [9]). This comes from
the fact that the quadratic Gaussian number field and circular fields
are among the most extensively studied algebraic fields. In particular,
for these fields there are theorems about corresponding ideals and about
distribution of their norms in arithmetic progressions explicitly given
by algebraic fields.

for joint approximation lattice Λ(θ1, . . . , θs) = {(q, qθ1−p1, . . . , qθs−ps) |
q, p1, . . . , ps ∈ Z}, where θ1, . . . , θs are arbitrary irrational numbers. Such
lattices are important because they are directly linked with the Littlewood
problem. It is readily seen that the dual lattice Λ∗(θ1, . . . , θs) has the form
Λ∗(θ1, . . . , θs) = {(q − θ1p1 − . . . − θsps, p1, . . . , ps) | q, p1, . . . , ps ∈ Z}.
The natural presumption is that the hyperbolic zeta functions of these
lattices are linked by some functional equation between values over the left
and the right semiplanes.

for algebraic lattice Λ(t, F ) = tΛ(F ).

for arbitrary lattice Λ. If the hyperbolic zeta function of any lattice cannot
be analytically continued to the whole complex plane (our presumption
is that it can be continued), then we must describe a class of all lattices
such that their hyperbolic zeta function can be analytically continued
to the whole complex plane except the point α = 1, where it has a pole
of order s.

It appears that the key to solving the analytic continuation problem is further
studying of possibility of the passage to the limit for hyperbolic zeta functions
of Cartesian lattices in the left semiplane over a convergent sequence of Carte-
sian lattices. If such a limit always exists, then passing to the limit in the func-
tional equation, we obtain a functional equation for the limit lattice. It appears
that obtaining a functional equation only in terms of dual lattices offers the gre-
atest promise since convergence of a lattice sequence is equivalent to conver-
gence of the sequence of corresponding dual lattices. It must be emphasized
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that we expect the greatest challenge in the case when a limit lattice is not
Cartesian and has only one main component. For example, this is the case
for all algebraic lattices.

Problem of behavior in the critical strip. N. M. Korobov pointed out the im-
portance of this problem in personal communications. He made an assumption
that the analytic continuation of the lattice hyperbolic zeta function from the
right semiplane to the critical strip and the analytic continuation of the hyper-
bolic zeta function of dual lattice or adjoint lattice from the left semiplane
to the critical strip will allow to obtain constants in the corresponding transfer
theorems.

Problem of lattice exponential sums values. Normalized exponential sums of
parallelepipedal nets can take two values: 0 and 1. Normalized exponential
sums of two-dimensional Smolyak nets can take three values: 0, 1, and −1
(see the paper [8]). For non-regular nets there is either the good uniform
estimate O

(
1√
N

)
or the sum is equal to 1. It is very important to obtain

estimates for normalized exponential sums of algebraic lattices. If the spectrum
of values of these sums is not concentrated around 0 and 1, then algebraic nets
can not be well approximated by parrallelepipedal nets and algebraic lattices
can not be well approximated by integer lattices.
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Suppose

SM,ρ⃗(m1,. . .,ms) =
N∑
k=1

ρke
2πi[m1ξ1(k)+...+msξs(k)]

is an exponential sum of weighted net, S∗
M,ρ⃗(m⃗) = 1

N
SM,ρ⃗(m⃗) is a normed exponential

sum of weighted net.

Definition 1. [1] The zeta function of a net M with weights ρ⃗ and parameter
p ≥ 1 is the function ζ(α, p|M, ρ⃗) such that in the right semiplane α = σ+it (σ > 1)2

ζ(α, p|M, ρ⃗) =

∞∑′

m1,...,ms=−∞

|S∗
M,ρ⃗(m⃗)|p

(m1 . . .ms)α
=

∞∑
n=1

S∗(p,M, ρ⃗, n)

nα
, (1)

where
S∗(p,M, ρ⃗, n) =

∑
m⃗∈N(n)

|S∗
M,ρ⃗(m⃗)|p. (2)

1This research was partially supported by the RFBR grant №11-01-00571a
2m = max{1, |m|}
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Theorem 1. If f(x1, . . . , xs) ∈ Eα
s (C), then

|RN [f ]| ≤ C

∣∣∣∣ 1

N
SM,ρ⃗(⃗0)− 1

∣∣∣∣+
C

N

∞∑′

m1,...,ms=−∞

|SM,ρ⃗(m⃗)|
(m1 . . .ms)α

=

= C
∣∣∣S∗

M,ρ⃗(⃗0)− 1
∣∣∣+ C · ζ(α, 1|M, ρ⃗). (3)

This estimate cannot be improved on the class Eα
s (C).

Let us consider the class Eα,q
s with the norm

∥f(x⃗)∥Eα,q
s

=

(
|C (⃗0)|q +

∞∑′

m1,...,ms=−∞

|C(m⃗)|q(m1 . . .ms)
qα
p

) 1
q

<∞.

Theorem 2. If f(x⃗) ∈ Eα,q
s and

1

p
+

1

q
= 1, then

|RN [f ]| ≤

≤ ∥f(x⃗)∥Eα,q
s

(∣∣∣∣ 1

N
SM,ρ⃗(⃗0)− 1

∣∣∣∣p +
1

Np

∞∑′

m1,...,ms=−∞

|SM,ρ⃗(m⃗)|p

(m1 . . .ms)α

) 1
p

=

= ∥f(x⃗)∥Eα,q
s

(∣∣∣S∗
M,ρ⃗(⃗0)− 1

∣∣∣p + ζ(α, p|M, ρ⃗)
) 1

p

. (4)

This estimate cannot be improved on the class Eα,q
s .

Definition 2. [8] The hyperbolic parameter of a net M with weights ρ(x⃗) is

q (M,ρ(x⃗)) = min
m⃗∈Zs\{0⃗},|S(m⃗)|>0

m1 . . .ms .

In [1] the linear operator AM,ρ⃗ of weighted mean over net on the space of periodic
functions Eα

s is considered for arbitrary net M with weights ρ⃗. AM,ρ⃗ is defined
by the equality

g(x⃗) = AM,ρ⃗f(x⃗) =
1

N

N∑
k=1

ρkf [x1 + ξ1(k), . . . , xs + ξs(k)]. (5)

As far as a normed exponential sum of a net with weights is concerned it is natural
to define five subsets of the fundamental lattice Zs:

K0 = K0(M, ρ⃗) = {m⃗ ∈ Zs |S∗
M,ρ⃗(m⃗) = 0}, (6)

K1 = K1(M, ρ⃗) = {m⃗ ∈ Zs |S∗
M,ρ⃗(m⃗) = 1}, (7)

K2 = K2(M, ρ⃗) = {m⃗ ∈ Zs |S∗
M,ρ⃗(m⃗) ̸= 1, |SM,ρ⃗(m⃗)| = 1}, (8)

K3 = K3(M, ρ⃗) = {m⃗ ∈ Zs | 0 < |S∗
M,ρ⃗(m⃗)| < 1}, (9)

K4 = K4(M, ρ⃗) = {m⃗ ∈ Zs | |S∗
M,ρ⃗(m⃗)| > 1}. (10)
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It is clear that Zs = K0

∪
K1

∪
K2

∪
K3

∪
K4. This partitioning is called the

Korobov partitioning.
In [1] the regular and unbiased linear operator AM,ρ⃗ of weighted mean over net

was defined (see the paper [1], pp. 195 and 199). A regular operator does not
increase a norm of a function. Therefore K4 = ∅. Further, S∗

M,ρ⃗(⃗0) = 1 because
AM,ρ⃗ is unbiased.

Definition 3. The hyperbolic parameter q(K) of a subset K of the fundamental
lattice Zs is

q(K) = min
m⃗∈K

m1 . . .ms. (11)

If K is the empty set, then q(K) =∞.

Definition 4. Suppose M is a net with weights ρ⃗ such that the linear operator
AM,ρ⃗ of weighted mean over net is regular and unbiased, then the first, the second
and the third hyperbolic parameters of the net M with weights ρ⃗ are

qν (M,ρ(x⃗)) = q(Kν (M,ρ(x⃗))) (ν = 1, 2, 3). (12)

Suppose M is a rational net with denominator p, then in Gs = {x⃗ | 0 6 xi <
1 (i = 1, . . . , s)} there are exist N rational points of the form(

x
(k)
1

p
, . . . ,

x
(k)
s

p

)
k = 1, . . . , N, (13)

where x(k)i are integer, 0 ≤ x
(k)
i ≤ p− 1, p are natural.

Theorem 3. Suppose M is a rational net with denominator p and with weights ρ⃗
such that the linear operator AM,ρ⃗ of weighted mean over net is regular and unbiased,
then

p · Zs ⊂ K1 (M,ρ(x⃗)) ,

and the number of different values of exponential sums S∗
M,ρ⃗(m⃗) with weights ρ⃗

is finite and is not greater than ps.

Theorem 4. Suppose M is a rational net with denominator p and with positive
weights ρ⃗ such that the linear operator AM,ρ⃗ of weighted mean over net is regular
and unbiased, then the set K1(M, ρ⃗) is an integer lattice.

Theorem 5. Suppose M is a rational net with denominator p and with positive
weights ρ⃗ such that the linear operator AM,ρ⃗ of weighted mean over net is regular
and unbiased, then the set K1(M, ρ⃗)

∪
K2(M, ρ⃗) is an integer lattice.

Definition 5. A net M with weights ρ⃗ such that the linear operator AM,ρ⃗ of
weighted mean over net is regular and unbiased is of type ∆(N, s) < 1 if for any m⃗ ∈
K3(M, ρ⃗)

|S∗
M,ρ⃗(m⃗)| 6 ∆(N, s).
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Theorem 6. (Generalized Bakhvalov — Korobov’s theorem for the
lattice hyperbolic zeta-function) Suppose M is a rational net of type ∆(N, s) <
1 with denominator p and with positive weights ρ⃗ such that the linear operator AM,ρ⃗

of weighted mean over net is regular and unbiased, then

ζ(α, p|M, ρ⃗) ≤ 2(α+1)s+1α

(
α

α− 1

)s
(ln q(Λ) + 1)s−1

qα(Λ)
+

+ ∆p(N, s)
1

tα−1

(
lns−1 t

(α− 1)(s− 1)!
+

+
s−2∑
m=0

lnm t

m!

(
s−2∑
k=m

ζ(α)s−2−kCm
k

α− 1 + ζ(α)

α− 1
+
Cm
s−1

α− 1

))
, (14)

where Λ = K1(M, ρ⃗)
∪
K2(M, ρ⃗) and t = q3 (M,ρ(x⃗)).
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Let G be finitely generated Coxeter group with tree-structure defined by the
presentation G =< a1, ..., an; (aiaj)

mij , i, j = 1, n >, where mij is number that
corresponds to symmetrical matrix of Coxeter, and mii = 1,mij ≥ 2 a group G
matches the end coherent tree-graph Γ such that if the tops of some edge e of the
graph Γ match the form ai and aj, then the edge e corresponds to the ratio of the
species (aiaj)

mij [1].
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The group G can be represented as the tree product 2-generated of the groups,
united by a finite cyclic subgroups. We will go from the graph Γ of a group G to the
graph Γ as follows: the tops of the graph Γ put in conformity the Coxeter groups
of two forming Gij =< ai, aj; a

2
i , a

2
j(aiaj)

mij = 1 >, every edge e, connecting tops
corresponding toGij andGjk put in conformity the cyclic subgroup< aj; a

2
j >. LetG

be finitely generated Artin group by the copresentation G =< a1, ..., an; ⟨aiaj⟩mij =
⟨ajai⟩mji , i, j = 1, n, i ̸= j >, where ⟨aiaj⟩mij is the word with the length mij,
is consisting of mij alternating letters ai and aj, i ̸= j, and mij is number that
corresponds to symmetrical matrix of Coxeter, where mij ≥ 2, i ̸= j. If the group G
corresponds the finite coherent tree-graph Γ such that if the tops of some edge e of
the graph Γ correspond forming ai and aj, then for the edge e corresponds to the
relation of the form ⟨aiaj⟩mij = ⟨ajai⟩mjii ̸= j. In this case, we have an Artin group
with a tree-structure [2].

We represent the group G as the tree product 2-generated of the Artin groups
united by an infinite cyclic subgroups. We will go from the graph Γ of a group
G to the graph Γ as follows: the tops of the graph Γ put in conformity the Artin
groups of two forming Gij =< ai, aj; ⟨aiaj⟩mij = ⟨ajai⟩mji , i ̸= j > and Gij =<
ai, aj; ⟨aiaj⟩mij = ⟨ajai⟩mji , i ̸= j >, every edge e, connecting tops corresponding to
Gij and Gjk put in conformity the cyclic subgroup < aj >.

Problem of freedom is to determine whether a given subgroup of the group of
the free. In [3] this problem is considered for Coxeter groups of extra large type.

This paper considers the theorem on the freedom of the Artin and Coxeter groups
with a tree-structure.

Theorem 1. A finitely generated without torsion free subgroup of the Coxeter
group with a tree-structure is free.

Theorem 2. Let H be finitely generated subgroup of the Artin group G with a
tree-structure, while for any g ∈ G and every subgroup Gij, i ̸= j, executed equality
H ∩ gGijg

−1 = E then H is free.

Theorem 3. Let H be finitely generated subgroup of the Artin group G with the
tree-structure, it is possible to allocate effectively free part of subgroups H.

In the proof of use of the ideas V.N. Bezverkhnii on bringing many forming of
the subgroup to the special set [4,5].
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The question about the distribution of integral points on quadratic surfaces long
since attracts many investigators’ attention. In more general statement of a question
a problem about weighted quantify of integral points is also considered on such
surfaces (see, [1, 2]).

We will considered the unconic four-dimensional surface given by the equation

Q1 (x1, x2)−Q2 (x3, x4) = h, (1)

where h ̸= 0 is integer; Q1 (x1, x2) and Q2 (x3, x4) are the polyhedron positive binary
quadratic forms (quadric quartic) with matrices A1 and A2, detA1 = detA2 = −δF ,
where δF is a discriminant of imaginary quadratic field F = Q(

√
d) and d is negative

square-free number.
We will connect the function with the equation (1)

Ih,λ(n) =
∑

Q1(x1,x2)−Q2(x3,x4)=h

e
−λ(Q1(x1,x2)+Q2(x3,x4))

n , (2)

which is called the weighted number of integral points on the surface (1) taken with
the weight e−

1
n
ω(x1,x2,x3,x4), where

ω (x1, x2, x3, x4) = λQ1 (x1, x2) + λQ2 (x3, x4) ,

λ > 1.
The introduction of natural parameter λ due to the fact that further we will use

the results from [1, 2], obtained by other approach, providing with this parameter
λ > 1 the condition of positivity Q1 (x1, x2, x3, x4) + ω (x1, x2, x3, x4), where

Q1 (x1, x2, x3, x4) = Q1 (x1, x2)−Q2 (x3, x4) .
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For the function Ih,λ(n) for λ = 1 and h = 1 in [3] asymptotic formula with
remainder term O

(
n

3
4
+ε
)
, where ε > 0 is arbitrarily small positive number is

obtained. Using the approach from [3] we obtained the following asymptotic result
about the value Ih,λ(n) in which the dependence of remainder term δF , λ, h is
established.

Theorem 1. For the weighted number of integral points Ih,λ(n) on the four-
dimensional quadratic unconic surface Q1 (x1, x2) − Q2 (x3, x4) = h with weighting
function λ (Q1 (x1, x2) +Q2 (x3, x4)) asymptotic formula is true

Ih,λ(n) =
2π2ne

−λh
n

λ |δF |

∞∑
q=1

q−4

q∑
ℓ=1

(ℓ,q)=1

e−2πi
ℓh
q ·

·G1

(
q, ℓ, Ō

)
·G2

(
q,−ℓ, Ō

)
+O

(
λ2hn

3
4
+ε
)
,

where G1

(
q, ℓ, Ō

)
and G2

(
q,−ℓ, Ō

)
are homogeneous double Gauss sums; ε is arbi-

trarily small positive number.

We note that theorem makes precise the corresponding result from [2] in which
in case of four-dimensional quadratic surfaces the remainder depending on δF in our
designations has the form O

(
|δF |3 n

3
4
+ε
)
.
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One of the important problems is the problem of description for torsion free
abelian groups of finite rank. This problem has been researched by many authors.
We mention classical works by L.S. Pontryagin [1], А.I. Maltsev [2], А.G. Kurosh [3],
F. Levi [4], R. Baer [5], D. Derry [6], R. Beaumont and R. Pierce [7,8]. The question
how to find convenient terms for torsion-free finite-rank groups is actual up to now,
because this class of groups is very complicated.

The notion of the quotient divisible mixed group has been introduced in [9].
It generalizes the classic notion of the quotient divisible torsion free group by R.
Beaumont and R. Pierce [8].

An abelian group A is called quotient divisible, if it contains a free subgroup F
of finite rank such that the quotient group A/F is torsion divisible, but the group A
itself doesn’t contain nonzero torsion divisible subgroups. A free basis of the group
F is called the basis of the quotient divisible group A.

It is shown in [9] that the category QD of all quotient divisible groups with
quasi-homomorphisms is dual to the category QT F of all torsion-free finite-rank
groups with quasi-homomorphisms.

The new method of the description is proposed in [10,11,12]. We describe pairs
consisting of two mutually dual groups: a quotient divisible group and a torsion-
free finite-rank group. The terms of the description are finite sequences of finitely
presented modules over the ring of polyadic numbers. The method is the following.

The product Ẑ =
∏
p

Ẑp of the rings of p-adic integers over all prime numbers p

is called the ring of polyadic numbers.
Let α = (αp) ∈

∏
p

Ẑp be a polyadic number. We denote as mp the maximal

power of the prime number p such that pmp divides the p-adic integer αp in the ring
Ẑp,mp =∞⇔ αp = 0. The characteristic char(α) = (mp) is called the characteristic
of the polyadic number α. A polyadic number α divides a polyadic number β if and
only if char(α) ≤ char(β). Every finitely generated ideal ⟨α1, . . . , αn⟩Ẑ of the ring Ẑ
is generated by one element ⟨α1, . . . , αn⟩Ẑ = ⟨α⟩Ẑ, where α is the greatest common
divisor of the numbers α1, . . . , αn. This ideal is of the form Iχ = {γ ∈ Ẑ | char(γ) ≥
χ}, where χ = char(α). The quotient ring Zχ = Ẑ/Iχ is of the form Zχ =

∏
p

Kp,

where Kp = Zpmp if mp <∞ or Kp = Ẑp if mp =∞, χ = (mp). We consider the ring
Zχ also as a cyclic Ẑ-module.

Let R be a ring. An R-module M is called finitely presented if there exists an
exact sequence of homomorphisms

Rn → Rk →M → 0

for some positive integers n and k.
The following two theorems take place , see [13] or [14].
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Theorem A. A Ẑ-module M is finitely presented if and only if it is of the form
M ∼= Zχ1

⊕
. . .
⊕

Zχn for some characteristics χ1, . . . , χn.

The sequence of the characteristics χ1, . . . , χn in Theorem A is determined
not uniquely by the module M . Nevertheless, there exists a sequence χ1, . . . , χn

satisfying the condition χ1 ≥ . . . ≥ χn . The decreasing sequence χ1 ≥ . . . ≥ χn is
determined uniquely by the module M and it is called the generalized characteristic
of the finitely presented Ẑ-module M .

Theorem B. Let N be a finitely generated submodule of a finitely presented
Ẑ-module M . Then the modules N and M/N are finitely presented.

We define now a category S of sequences. This category has been introduced in
[12] as well as the categories D and T F . An object of the category S is a finite
sequence of elements a1, . . . , an of a finitely presented module M over the ring of
polyadic numbers Ẑ. The order of elements is essential, repetitions in the sequence
are possible.

Morphisms from an object a1, . . . , an to an object b1, . . . , bk are pairs (φ, T ),
where φ : ⟨a1, . . . , an⟩Ẑ → ⟨b1, . . . , bk⟩Ẑ is a homomorphism of Ẑ-modules generated
by these sets of elements and T is a matrix of size k × n with integer entries, such
that the following matrix equality takes place

(φa1, . . . , φan) = (b1, . . . , bk)T.

That is φ(ai) = t1ib1 + . . .+ tkibk, i = 1, . . . n, T = ∥tij∥.
Let two morphisms be given

a1, . . . , an
(φ,T )−→ b1, . . . , bk

(ψ,S)−→ c1, . . . , cm

The composition of the morphisms is defined as (ψ, S)(φ, T ) = (ψφ, ST ). The
identity morphism of an object consists of the identity homomorphism and the
identity matrix.

The objects of the category S are the terms which describe objects of the
following two categories of groups. Objects of the categoryD are all quotient divisible
groups with marked bases. Objects of the category T F are all torsion-free finite-rank
groups with marked bases (maximal linearly independent sets). Morphisms of these
two categories D and T F are usual group homomorphisms such that the matrices
of them with respect to the marked bases consist of integers.

The main result is the following theorem.

Theorem 1. The commutative diagram of six functors takes place

S
↗↙ ↘↖

T F ←→ D
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At that, the functors T F ↔ S and T F ↔ D are dualities and the functor S ↔ D
is an equivalence.

Some applications of this theorem are given in [11,12]. In particular, this approach
is applied to the almost completely decomposable groups in [11], where the famous
example of the group by A.L.S. Corner [15] is considered.

It is interesting to remark the following. Let a1, . . . , an be a sequence of elements
of a finitely presented Ẑ-module M , that is an object of the category S. Choosing a
direct decomposition of the module M according to the Theorem А, we can present
the elements a1, . . . , an as columns of "generalized" numbers, i.e. elements of the
rings Zχ. Then we obtain a matrix. It occurs that the p-components of this matrix
are matrices which have been used by A.I. Maltsev in his paper [2], they are so called
perfect matrices in his terminology. Thus, the duality T F ↔ S actually coincides
with the description by Maltsev [2]. The duality T F ↔ D is a modification of the
duality QT F ↔ QD [9]. As for the p-primitive torsion free groups by A.G. Kurosh
[3], they are also quotient divisible. It means that we can consider the equivalence
S ↔ D as a generalization of the theorem by Kurosh [3].

As a result of all this consideration, a new interest occurred to the matrices by
Maltsev [2]. So Yu.V. Kostromina [16,17] has found recently the Maltsev’s matrices
for the dual in the sense of R. Warfield [18] groups in the class of locally free groups,
she has found also the Maltsev’s matrices for the dual in the sense of D. Arnold [19]
groups in the class of quotient divisible torsion free groups.
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This work describes a new result on the varieties of Leibniz algebras. A Leibniz
algebra is called a linear algebra with multiplication satisfying the identity (xy)z ≡
(xz)y + x(yz). It is well-known that any Lie algebra is a Leibniz algebra.

Let F be a field of characteristic zero. The necessary concepts can be found in
books [1] and [2]. Let us recall, that a variety V is almost nilpotent if V is not
nilpotent and every his own subvariety is nilpotent. It is well-known that in case
of associative algebras the variety of all associative and commutative algebras is
the unique almost nilpotent variety, and in case of Lie algebras the variety of all
metabelian Lie algebras A2 is the unique almost nilpotent variety of Lie algebras.
The variety A2 is defined by identity (x1x2)(x3x4) ≡ 0.

The identity x(yz) ≡ 0 defines the variety 2N of all left nilpotent of the class not
more than two algebras. A full description of this variety is given in the paper [3].

Theorem 1. In the case of a field of zero characteristic there are exactly two
almost nilpotent varieties of Leibniz algebras. There is the variety A2 of all metabe-
lian Lie algebras and the variety 2N of all left nilpotent of the class not more than
two algebras.

In proving the theorem, we have used the results of papers [4] and [5]. We give a
basic sketch of a proof. We will use the left normed notation and write ((ab)c) = abc.
We denote the multiplication operator on the right, such as the element z, by capital
letter Z: we suppose that xz = xZ. In particularly the Engel identity looks like
xyy...y︸ ︷︷ ︸

m

= xY m ≡ 0 in our notation.

Let U be another almost nilpotent variety of Leibniz algebras, then U
∩

2N is
nilpotent and the identity x1Xm

1 ≡ 0 is satisfy in U. The identity x2Y m ≡ 0 follows
from the last identity. Consider a Leibniz algebra L ∈ U. It is well-known, that there
is an ideal If = {a|aXm ≡ 0, for any x ∈ L}. As x2 ∈ If , so the identity x2 ≡ 0
is satisfy in quotient algebra L/If and then L/If is a Lie algebra. There are two
possibilities:

In the first case the quotient algebra L/If is not nilpotent in the variety U,
and so there is a non-nilpotent variety of Leibniz alebras varL/If , generated by Lie
algebra L/If . So minimal non-nilpotent variety A2 ⊂ varL/If ⊂ U and U = A2.

In the second case the quotient algebra L/If is nilpotent and
identity x1x2 . . . xc ≡ 0 is satisfy in L/If . By definition of ideal If the identity
x1x2 . . . xcX

m ≡ 0 is satisfy in Leibniz algebra L, and then Engel identity is satisfy
in L. So by the theorem from paper [5] the variety U is nilpotent.

Thus, 2N и A2 — exactly two almost nilpotent varieties of Leibniz algebras.
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A review of the theory of crystalline cohomology and crystalline representations
that includes some new results is given. Examples and applications are included.

1 Introduction
Purposes of the communication are: 1) a review of recent results that extend:

Grothendieck‘s approaches and their implementation by P. Bertelot, expositions by
L. Illusie and W. Messing; the theory of Dieudonne modules, Dieudonne crystals
and F -crystals, cristalline cohomology; 2) applications of the results to K3 surfaces
[1] and more general Calabi-Yau varieties. Presenting results are connected with:

(i) with theory of formal groups [4, 5] and p - divisible groups;
(ii) with families of varieties over basic schema S of characteristic p (and include

the review of the case of two dimensional abelian varieties);
(iii) with loop groups of reductive groups by Faltings, by Hartl abd by Viehmann;
(iv) with Newton polygons and the supremum of Newton polygons of p-divisible

groups by Ekedahl, by van der Geer and by Harashita.

2 Preliminaries and Definitions
Let F be a commutative formal group low of n variables over commutative ring

R with unit. In the case n = 1, following to the known results by M. Lazard, there
is only one 1− bud of the form x+ y + αxy.



56 XII International conference

Proposition 1. Let n = 2, A = Zp[α, β] be the ring of polynomials with integer
p-adic coefficients from α, β. 1− buds are

F (x, y) =

{
x1 + y1 + αx1y1
x2 + y2 + βx2y2,

Fa(x, y) =

{
x1 + y1 + αx1y1
x2 + y2 + βx1y1,

Fb(x, y) =

{
x1 + y1 + αx2y2
x2 + y2 + βx2y2,

Fc(x, y) =

{
x1 + y1 + α(x1 + x2)(y1 + y2)
x2 + y2 + β(x1 + x2)(y1 + y2),

Note 1. 1− buds given in Proposition 1 are also two-dimensional formal group
lows, whose coefficients under terms of degrees > 3 are zeros.

Note 2. These group lows define classes of group lows. In particular, the class Fa
contains under values of parameters α = 0, β = −1, the Witt group, that corresponds
to prime number p = 2.

Let now the ring R is the field k. Recall, that formal k− scheme is formal
k− functor, that is the limit of directed inductive system of finite k− schemes,
and a formal group is a group object in the category of formal k− schemes. The
notion of a stack, as one of category theory variants of moduli space is defined by
P. Deligne and D. Mumford.

Proposition 2. There exist formal stacks, that are categories that are bundled
on formal groupoids and that satisfy axioms of decent theory.

Let R be a complete discrete valuation ring with quotient field K and perfect
residue field k of characteristic p. Under Calabi-Yau variety over K we understand
smooth projective scheme V over K of dimention n with trivial canonical bundle
ωX = Ωn

X\K [1, 2]. A weak N‘eron model of the variety X is called smooth proper
scheme V of finite type over R with the isomorphism V ⊗R K ≃ X, that satisfies
next property: for every finite unramified extension R′ ⊃ R with quotient field K ′,
the canonical mapping V(R′)→ X(K ′) is bijection [3].

3 Conclusions
We apply above mentioned constructions and results to investigation of smooth

Calabi-Yau varieties [1, 2], their N‘eron model, weak N‘eron model, and to reductions
of the models over residue fields k. Examples of simple crystalline representations
will be given.
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An overview of algebraic problems and methods for optimizing the shape of
flexible body in terms of buckling load of such a body is given. Examples and
applications are provided.

1 Introduction
Shape optimization problems for flexible bodies, that can withstand extreme

stress have been considered by Bernoulli and Euler[1]. Evolving the work [1], resear-
ches of J. L Lagrange, T. Clausen, E. Nicolai, and others, N. Olhoff and S. Rasmun-
ssen have found [2], that problems under investigation can be reduced to problems of
non-differentiable optimization. The author of review [3] believes, that the multiple
eigenvalue may occur in many optimization problems in terms of stability criteria.
Algebra allows us to resolve situations in which problems with the applicability of the
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classical differential methods arise. The present report gives an overview of algebraic
approaches, techniques and their applications in nondifferentiable optimization prob-
lems for the shape of flexible bodies in terms of buckling load of such a body.

2 Preliminaries and definitions
The known results from sources [4, 5] are provided and used below. Suppose X

is a matrix of size n1 × n2, whose elements are real numbers. Let X∗ be a matrix
conjugate with respect to the matrix X. It is known that nonzero eigenvalues of
matrices XX∗ and X∗X are coincident and positive. Arithmetic values of the square
roots of common eigenvalues of matrices XX∗ and X∗X are called singular values of
matrix X. In the following we suppose that σk is k-largest singular values of matrix
X. Also we suppose that these singular values are arranged in the order of decreasing
σ1 > σ2 > · · · > σn > 0, where σn is the smallest singular value. Suppose singular
values σn+1 · · · equal zero.

2.1 Norms

.
For vectors x, y ∈ Rn with an inner product (x, y) we will use Euclidean norm

l2 , which would be denoted by ∥x∥ =
√

(x, x). The inner product in Rn1×n2 of
matrix X, Y,X0 from Rn1×n2 would be denoted by (X, Y ) = tr(X∗Y ). Euclidean
norm of a matrix X would be denoted by ∥X∥E = (X,X)

1
2 . Spectral norm of a

matrix X equels the greatest singular values of matrix X. It would be denoted by
∥X∥. Nuclear norm of X would be denoted by ∥X∥∗.

Note 1. For a matrix A ∈ Rn1×n2

∥A∥E = (trAA∗)
1
2 = (trA∗A)

1
2 =

(∑n
i=1 σ

2
i

) 1
2 ,

where σ1, σ2, · · ·σn are nonzero singular values of the matrix A.

2.2 Subgradient.

Recall the definition of the subgradient of a convex function f : Rn1×n2 → R.

Definition 1. A matrix gf (X0), satisfying the condition
f(X)− f(X0) > (gf (X0), X −X0)
for all X ∈ Rn1×n2 is called a subgradient f in X0.

The set
∂f(X0) = {X∗ ∈ Rn1×n2|f(X)− f(X0) > (X∗, X −X0)}
is called the subdifferential of f in X0.
Let A⊗B be a tensor product (Kronecker’s product) of two rectangular matrices

whose elements are real numbers. In the following it is used mainly for vectors.
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Note 2. Let A ∈ Rn1×n2be a matrix whose rank is r. Matrix A has singular value
decomposition which is represented as A =

∑
16i6r σiui⊗ vi∗. Then subgradient of a

nuclearl norm A is known and it be represented as
g∗(A) =

∑
16i6r ui ⊗ v∗i +W .

Matrix W meets the known properties (in particular, ∥W∥ 6 1).

2.3 r- Algorithm

One of the most effective methods of nondifferentiated optimizing is subgradient
method with space dilation in the direction of the difference of two successive
subgradients [4]. Following by [4, 5] the application of matrix r-algorithms scheme
will be presented. Since Rn1×n2 is an Euclidean space then we will concider elements
of Rn1×n2 as elements of an Euclidean space En, where an inner product would be
denoted by (, ). Operator of space dilation in the direction ξ with coefficient α will
be denoted by Rα(ξ).This operator under its application to an element x of the
Euclidean space En dilates in α times (x, ξ)ξ and does not alter the x− (x, ξ)ξ.

2.4 Projections.

Let V be a subspace of dimension r in En and PV be the orthogonal projection
onto V . During calculations we need to project with application of PV , also we need
to project points of space En onto a closed convex subspace S from En. The problem
of projection of the point a ∈ En on S has the representation

d(x) = ∥x− a∥ → min, x ∈ S,
and its solution is a solution d(x) = min∥x − a∥, x ∈ S of this minimization

problem.

3 Conclusion

We apply the above-mentioned constructions and results, as well as
other methods of linear algebra to problem of nondifferentiable optimization the
shape of flexible body in terms of its buckling load.
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Flow control in near-wall areas attracts wide interest in both the fluid mechanics
and engineering because of many potential applications. Drag reduction of bodies,
lift enhancement, mixing advancement etc. are some of many problems in which
near-wall flow control is urgent. The proposed control strategy is based on special
changes of the near-wall vorticity field by means of generation of stationary vortex
zones. Artificial surface irregularities such as cross grooves, interceptors, ribs and
so on may be applied to create the desired vortex. To minimize energy costs for
realization of this control way, one has to take into account dynamic properties of
the vortices created. The most effective control algorithms use information about
critical points and other topology features of a flow pattern. In some cases, the goal
of control lies in generating the necessary flow topology.

In this work, we consider cross grooves as the instrument for generation of local
separation zones on the wall. A simplified model when the zone is replaced by a
point vortex locating in the vorticity center is applied to derive dynamic properties
of the flow [I. M. Gorban and O. V. Homenko, Dynamics of Vortices in Near-wall
Flows with Irregular Boundaries, Continuous and Distributed Systems: Theory and
Applications, Series: Solid Mechanics and Its Applications, 2014, Vol. 211, 115-128,
Zgurovsky, Mikhail Z., Sadovnichiy, Victor A. (Eds.)].

Motion of the vortex is governed by a set of non-linear differential equations with
the vortex velocity in the right part. The critical points of such a flow are determined
from the condition of vortex equilibrium and their types in the conservative system
depend on the "sign" of Jacobean only. The analysis points out on three stationary
points in this case and one point only that lies on the groove axis is stable. To
determine the strength of the vortex corresponding to this point, the Kutta condition
in the sharp groove edges is used. The vortex obtained is immovable in the global
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sense but it rotates periodically near the critical point along an infinite small trajec-
tory.

The rotation frequency is the important characteristic of the stationary vortex;
just it is responsible for its reaction to external perturbations. Investigations demon-
strate resonance behavior of the stationary vortex in the periodically perturbed flow
when the amplitude of deviation of the vortex from the critical point grows rapidly
when the external frequency approaches the vortex eigenfrequency.

To reduce sensitivity of the vortex to external perturbations, we propose the
scheme of active flow control with ejection of fluid from the region. The dynamic
system under consideration includes now the external flow, the stationary vortex and
a sink locating on the groove boundary. If one coordinate of the vortex is fixed, the
equations of vortex equilibrium and the Kutta condition in the groove edges will be
the sufficient system for determining another vortex coordinate, vortex circulation
and sink parameters (strength and angular coordinate). As a result, the curve of
stationary vortices in xy-plane is obtained and corresponding sink parameters are
evaluated. The dynamical analysis of the system shows that ejection changes the
flow topology. If without ejection the critical point is the conditionally stable center
that now it will be either stable or unstable focus that depends on point position
on the stationary curve. The stable vortices are obtained to be located the left of
the central axis of groove. The sinks corresponding to the stable flow patterns lie on
the groove wall that is opposite to the flow. The stable zone width will rise when
the groove depth decreases that important for a practice because of shallow grooves
are primary applied for near-flow control in technical applications. To demonstrate
operating the proposed control strategy, the direct numerical simulation of the flow
in the cross groove was carried out. The obtained vorticity patterns demonstrate
stabilization of flow in the groove when fluid ejecting.
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In 2008–2011, we solved several well-known additive problems such that Ternary
Goldbach’s Problem, Hua Loo Keng’s Problem, Lagrange’s Problem with restriction
on the set of variables. Asymptotic formulas were obtained for these problems ([1]–
[3]). The main terms of our formulas differ from ones of the corresponding classical
problems.

In the main terms the series of the form

σk(N, a, b) =
∑

|m|<∞

e2πim(ηN−0,5k(a+b)) sin
k πm(b− a)

πkmk
.
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appear.
These series were investigated by the authors in [4].
Suppose that k > 2 and n > 1 are naturals. Consider the equation

xn1 + xn2 + . . .+ xnk = N (1)

in natural numbers x1, x2, . . . , xk. The question on the number of solutions of the
equation (1) is Waring’s problem. Let η be the irrational algebraic number. In this
report we represent the variant of Waring’s Problem involving natural numbers such
that a 6 {ηxni } < b, where a and b are arbitrary real numbers of the interval (0, 1).

Let J(N) be the number of solutions of (1) in natural numbers of a special type,
and I(N) be the number of solutions of (1) in arbitrary natural numbers. Then the
equality holds

J(N) ∼ I(N)σk(N, a, b).

The series σk(N, a, b) is presented in the main term of the asymptotic formula in
this problem as well as in Goldbach’s Problem, Hua Loo Keng’s Problem.
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To solve the binary additive problems with primes from the intervals of the form

[(2m)c, (2m+ 1)c), (1)

where m ∈ N, и c ∈ (1, 2] it is required analog known theorem of Bombieri -
Vinogradov received in 1965 in the works [1] and [2].

D. Tolev proved a special variant of the Bombieri - Vinogradov theorem [3]:

Theorem 1. Let the inequalities

0 < λ <
1

4
, 0 < θ <

1

4
− λ, A > 0.

Then ∑
k6xθ

max
y6x

max
(a,k)=1

| ψλ(y; k, a)− y1−λ

φ(k)(1− λ)
|≪ x1−λ ln−A x,

where
ψλ(y; k, a) =

∑
n6y

n≡a (mod k)

{
√
n}<n−λ

Λ(n).

In theorem Bombieri - Vinogradov boundary of the parameter k is smaller than
√
x, and in Theorem Tolev k < x

1
4 . This circumstance makes it impossible apply

Theorem 1 to the solution of binary additive problems with primes of the intervals
of the form (1).

In this work a refinement of Theorem 1 in the special case is proved.

Theorem 2. Let c ∈ (1, 2] — constant. Let also πc(x, q, l) — the number of such
primes p 6 x and p ≡ l (mod q) that {0.5p1/c} 6 0.5.

Then for any A > 0 it is exist ε > 0 such that∑
q6x1/3−ε

max
(l,q)=1

|πc(x, q, l)−
Lix

2φ(q)
| 6 c x(lnx)−A,

where c = c(A) > 0.

In the proof of the theorem we use the formula obtained in the [4]:∑
n6N

n≡r(modq)

Λ(n)e2πif(n) = O(Nq−1N−κ),

where c ∈ (1, 2], A > 1 — arbitrary constant, f(n) = 0.5mn1/c,
1 6 m 6 (lnN)2A, 0 < ε 6 0.001 , q — natural number, q 6 N1/3−ε, κ = κ(ε) > 0.
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The talk is based on the papers [1, 2, 3].
Two important functions in matrix theory, determinant and permanent, look

very similar:

detA =
∑
σ∈Sn

(−1)σa1σ(1) · · · anσ(n) and perA =
∑
σ∈Sn

a1σ(1) · · · anσ(n)

here A = (aij) ∈Mn(F) is an n×n matrix and Sn denotes the set of all permutations
of the set {1, . . . , n}.

While the computation of the determinant can be done in a polynomial time,
it is still an open question, if there are such algorithms to compute the permanent.
Due to this reason, starting from the work by Pólya [4], 1913, different approaches
to change the matrix in such a way that the permanent of original matrix would
be equal to the determinant of the new matrix (to convert the permanent into the
determinant) were under the intensive investigation.

Among our results we prove the following theorem:

Theorem 1. Suppose n > 3, and let F be a finite field with charF ̸= 2. Then,
no bijective map T : Mn(F)→Mn(F) satisfies

perA = detT (A).

1The work is partially financially supported by the grants RFBR № 12-01-00140 and MD-
962.2014.1
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Also we investigate Gibson barriers (the maximal and minimal numbers of non-
zero elements) for sign-convertible (0, 1)-matrices and solve several related problems.
In particular, we find Gibson barriers for symmetric and weak symmetric conversion.

Our results are illustrated by the number of examples.
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We study the problem of representing several of natural numbers as a sum of
pairwise different terms. There is given the estimation of the minimal number of
components sufficient for such representation, provided that representation exists.
For convenience, the initial numbers are treated as a sets, and their constituent
components are treated as elements of these sets.

Theorem 1. Let there are m sets containing pairwise distinct natural numbers.
For each set the amount of incoming numbers is counted. Then the numbers in the
sets can be replaced so that the sums of numbers in the sets will stay the same, the
numbers will remain different, and their quantity will be not more then 2m− 1.

The proof is based on the transformation of sets, so that the sums of the elements
in them remained unchanged, while the quantity of items in each set does not exceed
two. At the same time there is the set with a single element. The algorithm of such
transformation is given.
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The quantity of elements in the sets depends on the number of different values
that the sums of the elements in the sets are taken. If all amounts are the same then
the minimum number of elements is equal to 2m − 1. It can be shown that if the
number of the values is equal to two, it is sufficient 2m− 2 elements. If all m values
are different, it is enough m = 2m − m elements. Hypothesis appears that if the
quantity of different values of amounts is equal to k then it is sufficient 2m−k items.
This hypothesis is disproved by the following example: 1+5, 6, 7, 8, 3+4+5, 9.
The quantity of sets is equal to 6, the quantity of numbers in them is equal to 9, the
quantity of different values is equal to 4. It is impossible to reduce the quantity of
numbers, as they can not be greater than 9, and all the numbers, not exceeding 9,
are presented already. If you reduce the quantity of numbers, you decrease the total
amount.

Leo Tolstoy Tula State Pedagogical University
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1 Introduction
Let Ω be an infinite dimensional unite cube:

Ω = {ω = (αn) |0 6 αn 6 1, n = 1, 2, ...} .

In this cube a product Lebesgue measure can be introduced (see [1, p. 219]). There
is another construction of a measure in Ω also called the Haar measure. The Haar
measure is defined in locally compact topological groups. It was proven uniqueness
of this measure if it is invariant in regard to transitions (see [2, p.241], [3, p. 303]).
Many of measures could be considered as a Haar measure. Particularly, the product
of Lebesgue measures in [0, 1]n is a Haar measure for any natural number n and,
hence, is unique in this cube. Really, to prove this, consider the topological group Rn.
The group Z ⊕ · · · ⊕ Z is a subgroup and the factor group Tn = Rn/(Z ⊕ · · · ⊕ Z)
is locally compact. Let A ⊂ [0, 1]n be a measurable set in the product Lebesgue
meaning in [0, 1]n. Consider the union of intersections (ā+A)

∩
(m̄+[0, 1)n), m̄ ∈ Zn

for any given vector ā ∈ Rn. Only no more than 2n of these intersections have non-
zero measure, and the sum of their measures is equal to the measure of the set
A. Therefore, the product measure is invariant in regard to the transitions x̄ 7→
x̄+ ā(mod1), x̄ ∈ [0, 1)n, ā ∈ Rn. So, this is a unique Haar measure.

Despite that the most of told above are true for Ω, the situation is currently
different in infinite dimensional case. We can define the Haar measure in Ω, as in
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the factor group, invariant in regard to transitions (mod 1). We get, then, a some
unique measure defined in R∞.

Consider now the unite cube Ω. In this case the “number” of non-empty intersec-
tions (ā + A)

∩
(m̄ + Ω′), m̄ ∈

∏∞
1 Z, A ⊂ Ω′ (here Ω′ : 0 6 ωn < 1) is non-

countable. So, the product measure in Ω is not invariant in regard to transitions
x̄ 7→ x̄ + ā(mod1), x̄ ∈ Ω′, ā ∈ Ω. Therefore, in Ω it would be introduced the
measure different from the Haar measure. Some of sets being measurable in the Haar
meaning can stand now nonmeasurable. Moreover, another measure, different from
product Lebesgue measure in Ω can be introduced also. The theorem below shows
justness of this statement. To formulate the main theorem we have to introduce
some designations.

We begin with studying of distribution of special curves of a kind ({tλn})n>1

(the sign {} means a fractional part, and λn > 0, λn →∞ as n→∞) in the subsets
of infinite dimensional unite cube. In the works [4,6,7,11,12] the finite case has been
studied. It is necessarily to note that this curve has a zero measure in the product
Lebesgue meaning. We below show that in Ω it can be introduced a new measure
(we denote it µ0) connected with metric, and in which the curve considered above
acquires a property of nonmeasurability.

2 The basic result

Our basic result is formulated below.

Theorem 1. Let the sequence (λn) be an unbounded sequence of positive real
numbers every finite subfamily of elements of which is linearly independent over the
field of rational numbers. Then the curve ({tλn}) , t ∈ [0, 1] is not µ0-measurable set
in Ω.

Definition 1. Let σ : N → Nbe any one to one mapping of the set of natural
numbers. If for any n > m there is a natural number m such that σ(n) = n, then we
call σ a finite permutation. A subset A ⊂ Ω is called to be finite-symmetrical if for
any element θ = (θn) ∈ A and any finite permutation σ one has σθ = (θσ(n)) ∈ A.

Let Σ denote the set of all finite permutations. We shall define on this set a
product of two finite permutations as a composition of mappings. Then Σ becomes
a group which contains each group of n degree permutations as a subgroup (we
consider each n degree permutation σ as a finite permutation, in the sense of
definition 1, for which σ(m) = m when m > n). The set Σ is a countable set
and we can arrange its elements in a sequence.

In Ω we define the Tychonoff metric by following expression

d(x.y) =
∞∑
n=1

e1−n |xn − yn| .
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Then (Ω, µ) becomes a compact metric space. At first we define, using usual product
Lebesgue measure, volume of the ball of a radius r > 0 in Ω0 = {x = (xn) | |xn| 6 1}:

B(0, r) = {E ∈ Ω0|d(x, 0) < r} .

On this bases it may be introduced the measure in the Ω by known way by
using of open sets. The open ball we define as an intersection Ω

∩
B(θ, r). An

elementary set we define as a set being gotten by using of finite number of operations
of unionize, taking differences or complements. It is clear that every elementary set
is µ0-measurable. The set of elementary subsets of Ω is an algebra of subsets. The
σ-algebra of subsets in Ω can be defined by known way and the set function defined
in the subsets’ algebra can be extended to the σ-algebra (see [1, p. 152]). The outer
and inner measures can be introduced by known way. Given any set in Ω, we call
it measurable, if and only if, when it’s outer and inner measures are equal (see also
[2,p.16]). Defined measure will be, as it seen from the reasoning above, a regular
measure, and outer measure of a set in the meanings of product and µ0-meaning are
the same. Our basic auxiliary result is a following lemma.

Lemma 1. Let A ⊂ Ω be a finite-symmetric subset of zero measure and Λ = (λn)
is an unbounded, monotonically increasing sequence of positive real numbers any
finite subfamily of elements of which is linearly independent over the field of rational
numbers. Let B ⊃ A be any open, in the Tychonoff metric, subset with µ0(B) < ε,

E0 = {0 6 t 6 1|{tΛ} ∈ A ∧ Σ′{tΛ} ⊂ B}.
Then, we havem(E0) 6 c0ε where c0 > 0 is an absolute constant, m designates the
Lebesgue measure.

The lemma 1 delivers the first fundamental difference. The main tool in the proof
of this lemma is that fact that if we have some covering of a closed set by a union of
a family of balls with finite total measure and none of which containing other then
there is a finite number of balls only having with this set a nonempty intersection.
This is somewhat different property than compactness, and the same property is
not satisfied by cylindrical sets. Another difference stands clear after the theorem
proved above. But in applications it is very important that every measurable set in
a new meaning is measurable in the meaning of product measure.
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The notions of pseudocharacters and quasicharacters are connected with the
such questions and properties of groups as stability of equations on groups, width of
verbal subgroups and groups of cohomologies. This notions were introduced by A.I.
Shtern in 1983 ([1]). Questions about the existence of non-trivial pseudocharacters
on different types of groups were considered in the work of R.I. Grigorchuk ([2, 3]),
V.G. Bardakov ([4]), V.A. Faiziev ([5]), author ([6, 7]).

A pseudocharacter on a group G is a function f from the group G to the space
of real numbers R such that

1) |f(ab)− f(a)− f(b)| < ε for some positive number ε and for any a, b ∈ G
2) f(an) = nf(a) for any a ∈ G and n ∈ Z.
A pseudocharacter is called non-trivial if φ(ab) − φ(a) − φ(b) ̸= 0 for some

elements a, b ∈ G
R. I. Grigorchuk has raised questions about the existence of non-trivial pseudo-

characters on groups with one defining relation, and two generators and also about
special pseudocharacters on free groups.

Question 1 (Grigorchuk). Let G be a non-amenable group with one defining
relation. Is it true that there are non-trivial pseudocharacters on G?
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Question 2 (Grigorchuk). Let F be a free group of rank ≥ 2, and α : F −→ F0

is an isomorphism on its subgroup F0 ∈ F. Is it true that there exists a nonzero α-
invariant (i.e. f(α(x)) = f(x)) pseudocharacter on F?

It is necessary to determine functions on free group Fn, which can be used for
building pseudocharacters invariant with respect to endomorphisms of free group.

Conditions on endomorphisms of free group, under which such non-trivial pseudo-
characters exist, are found. Let Fn =< a0, . . . , an−1 > be a free group. Consider these
endomorphisms Fn, at which the generators of this group transform as follows:

a0 → a1, a1 → a2, . . . , an−2 → an−1, an−1 → U0(a0, . . . , an−1),

where U0 is an element of a free group U0(a0, . . . , an−1).
Consider irreducible form of the element U0 in generators ai. Irreducible form

of element U0 is divided into 3 parts U0 ≡ U01U00U02, according to a special rule.
U00 is the part of the word U0, which contains all letters a0, lying in the U0 and is
bounded by them.

Theorem 1. Let Fn =< a0, . . . , an−1 > be the free group of rank n > 1, and let
α be an endomorphism, which is defined on Fn, and in which

a0 → a1, . . . , an−2 → an−1, an−1 → U0(a0, a1, . . . , an−1).

Let U00 is cyclically reduced. Suppose that irreducible form of U00 contains the letter
a±1
n−1. Then on the free group Fn there exists a non-trivial pseudocharacter invariant

with respect to the endomorphism α.

Theorem 2. Let Fn =< a0, . . . , an−1 > be the free group of rank n > 1, and let
α be an endomorphism, which is defined on Fn, and in which

a0 → a1, . . . , an−2 → an−1, an−1 → U0(a0, a1, . . . , an−1).

Let U00 is cyclically reduced. Suppose also that U0 contains a±2
n−1 with additional

conditions U0 ̸= a±1
0 , U0 is cyclically reduced. Then on the free group Fn there exists

a non-trivial pseudocharacter invariant with respect to the considered endomorphism
α.
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ON THE ANTIVARIETY OF UNARY ALGEBRAS
SATISFYING THE IDENTITY fg(x) = x.
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An algebraA = ⟨A,Ω⟩ is called unary if its signature Ω consists of unary symbols.
Unary algebras play an important role in algebra due to their applications and

numerous associations with other parts of this area of mathematics. For example,
unary algebras are identical to outputless automatons. They also can be interpreted
as orgraphs. This attracts to them the attention of specialists in Russia and abroad.

A significant place in investigation of unary algebras have algebras and classes
of algebraic systems which connected with given algebras in some special way. They
are semigroups of endomorphisms, groups of automorphisms, subalgebra lattices,
congruence lattices, topology lattises, and so on ([1], [2]). A range of important
conclusive results has been obtained for unars (i. e. algebras with one unary opera-
tion) on problems from [1], [2].

Theory of unary algebras with more than one operation turned out to have a
tangible specific character ([3], [4]). Therefore, results for unars not always can be
used for effective construction of hypotheses in general theory of unary algebras. So
the investigation of unary algebras with two unary operations is becoming essential.

Nowadays algebras of variety A1,1 defined by the identity fg(x) = gf(x) = x,
where f, g are functional unary symbols, are the most deeply investigated among
algebras with two unary operations (see, e.g., [5]).

In this paper we consider variety B1,1 of all algebras satisfying the identity
fg(x) = x. This variety has been investigated in [6], [7].

The following results have been obtained by the author.
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Theorem 1. The variety B1,1 is a A1,1 cover in the lattice of all varieties of
algebras with two unary operations.

A unary algebra is called strongly connected if it is generated by its any element.

Theorem 2. For any strongly connected algebra A from variety B1,1 the following
equation is valid

EndA = AutA.

(where EndA and AutA are respectively the semigroup of endomorphisms and the
group of automorphisms of A).
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Let A = ⟨A,Ω⟩ be an algebra and σ a topology on the set A. A n-ary operation
F ∈ Ω is called continuous with respect to σ if for any elements a1, a2, . . . , an ∈ A
and a neighborhood U of the element F (a1, a2, . . . , an) there are neighborhoods
U1, U2, . . . , Un of the elements a1, a2, . . . , an respectively such that F (U1, U2, . . .
. . . , Un) ⊆ U . If any signature operation of A is continuous with respect to σ, then σ
is said to be a topology on the algebra A. It’s not difficult to see that such topologies
form a complete lattice under inclusion. This lattice will be called the topology lattice
of the algebra A and denoted ℑ(A). As usual, the congruence lattice of A is denoted
by ConA.

Let C̃onA be the dual lattice to ConA. Then C̃onA is isomorphic to a sublattice
of ℑ(A) ( see [1]).

A unary algebra ⟨A,Ω⟩ is called commutative if f(g(a)) = g(f(a)) for all f, g ∈ Ω,
a ∈ A.

A commutative unary algebra is finite if and only if its congruence (topology)
lattice is finite ([2]). There are infinite noncommutative unary algebras with finite
congruence lattices and finite topology lattices (see [2]).

The class of all commutative unary algebras with linearly ordered congruence
lattices is characterized in [3]. In [2] the class of all commutative unary algebras
with linearly ordered topology lattices is described.

In this paper we describe commutative unary algebras whose nontrivial congruen-
ces (topologies) form an antichain.

A unary algebra is called strongly connected if it is generated by its any element.
We’ll say that an algebra A′ = ⟨A′,Ω′⟩ is obtained from A = ⟨A,Ω⟩ by the

addition of loop e if the following conditions are valid
1) e /∈ A, A′ = A ∪ {e}, Ω ⊆ Ω′;
2) A is a subalgebra of the reduct ⟨A′,Ω⟩ of A′;
3) (∀f ∈ Ω′)(f(e) = e);
4) (∀f ∈ Ω′ \ Ω)(f(A) = {e}).

Let us note, that if Ω = Ω′ then A′ is obtained from A by the addition of e as a
new connected component.

A monogenic algebra ⟨A, f⟩ with a generator a and defining relation fn(a) =
fn+m(a), where n > 0, m > 0 is denoted by Cn

m.

Theorem 1. All nontrivial congruences of an arbitrary algebra A = ⟨A,Ω⟩ form
an antichain if and only if at least one of the following conditions is valid:
1) |A| 6 3;
2) A is a strongly connected algebra whose order is equal to pp1 or pk, where p, p1
are prime numbers, 0 6 k 6 2;
3) A can be obtained from a some strongly connected algebra of a prime number by
the addition of a loop;
4) there is a operation f ∈ Ω such that the reduct ⟨A, f⟩ of A is isomorphic to an
algebra C1

p , where p is a prime number.
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Theorem 2. All nontrivial topologies of an arbitrary algebra A = ⟨A,Ω⟩ form
an antichain if and only if at least one of the following conditions is valid:
1) |A| 6 2;
2) A is a strongly connected algebra whose order is equal to pp1 or pk, where p, p1
are prime numbers, 0 6 k 6 2.
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Let A = ⟨A, f⟩ be an arbitrary unar, i. e. an algebra with one unary operation
f . Suppose P(A) is the set of all subsets of A and

f(B) = {f(b)|b ∈ B}

for any B ∈ P (A). Then ⟨P (A), f⟩ is called the unar of subsets of A.

Theorem 1. A variety generated by a unar coincides with the variety generated
by its unar of subsets.

The union of two disjoint unars B and D is denoted by B + D. If A = B + D
and B ̸= ∅, then the unar B is called a component of A. A unar is called connected
if it doesn’t have proper components (see, e.g. [1]).

Let N be the set of all positive integers, ⟨A, f⟩ a unar, a ∈ A, and n ∈ N. Then
the result of n-tuple application of f to a is denoted by fn(a).

A unar ⟨A, f⟩ is said to be a cycle of length n (n ∈ N) if ⟨A, f⟩ is a monogenic
unar and fn(a) = a, fk(a) ̸= a for all a ∈ A, 0 < k < n.

For any k, n ∈ N we’ll write k|n if n is divisible by k.

Theorem 2. Let A be a finite connected unar with a cycle of length n. Then
the number of all connected components of the unar of subsets of A is equal to∑
k|n,d|k

µ(d)2
k
d

k
, where µ : N→ N is Mobius function.
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A right act over a semigroup S (or a right S-set ; see [1]) is a setX with a mapping
X×S → X, (x, s) 7→ xs such that the axiom x(st) = (xs)t is held for x ∈ X, s, t ∈ S.
A left act is defined dually. A congruence of the (right) act X over the semigroup S
is an equivalence relation ρ on X such that (x, y) ∈ ρ⇒ (xs, ys) ∈ ρ for all x, y ∈ X,
s ∈ S. The least congruence is the relation of equality ∆X = {(x, x) |x ∈ X}.

A coproduct
⨿

i∈I Xi of a family of acts {Xi | i ∈ I} over the semigroup S is
the disjoint union of these acts (if Xi have a non-empty intersections then we take
their isomorphic disjoint copies). An act X is called co-indecomposable if it is not a
non-trivial coproduct of the acts.

Theorem 1. Every act is a coproduct of co-indecomposable acts.
A main congruence ρa,b of act X over a semigroup S is the congruence generated

by a pair (a, b) where a, b ∈ X and a ̸= b.
We want to describe the main congruences of arbitrary right act over a right zero

semigroup. For this we need the description of these acts obtained in [2], we give a
formulation of that Theorem.

Theorem 2. ([2], Corollary 10). Let X and S be nonempty sets, σ be an
equivalence relation on X. Further, the subsets Ys ⊆ X are given for each s ∈ S
such that |Ys ∩ xσ| = 1 for all x ∈ X, s ∈ S (here xσ denotes σ-class containing
the element x). Put st = t for all s, t ∈ S and xs = y where y is the unique element
of the set Ys ∩ xσ for x ∈ X, s ∈ S. Then S is a right zero semigroup, and X is a
right S-set. Moreover, any right act over the right zero semigroup is isomorphic to
an act constructed by this way.

Let S be a right zero semigroup, X be a right act over the S. Let σ and Ys (s ∈ S)
have the same meaning as in the previous theorem. The unique element of the set
Ys ∩ xs we denote by xs. Let K, K ′ be different classes of the equivalence relation
σ and as be the unique element of the set Ys ∩K, a′s be the unique element of the
set Ys ∩K ′. Denote by ρK,K′ the least equivalence relation on the set X containing
all the pairs (as, a

′
s) for s ∈ S. Differently ρK,K′ can be described in the language of

graphs theory. Consider bipartite graph Γ whose vertex set is the set K∪K ′ and the
set of edges is the set of pairs (as, a

′
s), s ∈ S. The equivalence classes of the relation
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ρK,K′ are exactly the connected components of the graph Γ. The following theorem
describes the main congruences on a right act over a right zero semigroup.

Theorem 3. Let S be a right zero semigroup, X be a right act over S (its
structure is described in Theorem 2). Let a, b ∈ X and a ̸= b. Then the common
view of the main congruences is so:

ρa,b =


{(a, b), (b, a)} ∪∆X , if (a, b) ∈ σ,
{(a, b), (b, a)} ∪ ρK,K′ ∪∆X if a ∈ K, b ∈ K ′ and K, K ′ are

different σ-classes.

Let us again consider an arbitrary act X over a right zero semigroup S. In view
of the Theorem 1 we have X =

⨿
i∈I Xi where Xi are the co-indecomposable acts.

Note that Xi are exactly the classes of the relation σ appearing in Theorem 2. Let
Ys have the same meaning as in this Theorem. The unique element of the set Xi∩Ys
we will denote by ais. For any subset J ⊆ I let ρJ be the least equivalence relation
on the set

∪
j∈J Xj containing all the pairs (ais, ajs) where i, j ∈ J, s ∈ S. Note that

the relation ρJ generalizes the relation ρK,K′ which was used to construct the main
congruences.

Theorem 4. ([3]). Let X be an act over a right zero semigroup S, X =
⨿

i∈I Xi

be its decomposition into a coproduct of co-indecomposable acts. Let Ys (s ∈ S) and σ
have the same meaning as in Theorem 2. Consider an arbitrary equivalence relation
τ on the set I. Let I =

∪
{Jα |α ∈ Ω} be a decomposition of the set I into classes of

the equivalence relation τ . For each α ∈ Ω let us take any equivalence relation ρ′α on
the set

∪
{Xi | i ∈ Jα} satisfying the condition ρ′α ⊇ ρJα . Then ρ =

∪
{ρ′α |α ∈ Ω} is

a congruence of the act X. Conversely, each congruence of the act X has this form.
The following theorem is a reformulation of the Corollary 10 in [2]. It is needed

for us to describe the structure of any right act over a right zero semigroup.
Theorem 5.Let X be a set, Y ⊆ X be a nonempty subset, A = X\Y (it is

possible that A = ∅), {φs | s ∈ S} be a family of mappings φs : A → Y . Put st = s
for all s, t ∈ S, as = φs(a) for s ∈ S, a ∈ A and ys = y for y ∈ Y , s ∈ S. Then S
is a left zero semigroup, X = Y ∪ A is a right act over the S. Moreover, any right
act over the left zero semigroup can be constructed by this way.

The congruence of any right act over a left zero semigroup may be desribed as
follows::

Theorem 6.Let X be a right act over a left zero semigroup S. Let the sets
Y , A and the mapping σs : A → Y (for s ∈ S) have the same meaning as in
the previous theorem. Take any equivalence relation σ on the set Y . For s ∈ S
let φ−1

s (σ) = {(a, b) | (φs (a) , φs (b)) ∈ σ}, σ̃ =
∩
s∈S φ

−1
s (σ). For each class K of

the relations σ let AK =
∩
s∈S φ

−1
s (K) (this set can be empty). Take the subsets

A
′
K ⊆K AK and put ZK = K

∪
A

′
K. Let σ′ be an any equivalence relation on the set

A\ ∪ KA
′
K, contained in σ̃. Then ρ =

∪
K (ZK × ZK)∪σ′ be a congruence of act X.

Moreover, any congruence ρ of act X, for which ρ|Y = σ, built so.
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Vortical structure of fluid flows is a determining factor when moving a body in
water or in air as well as when operating hydraulic systems. A lot of important
technical problems in fluid dynamics connect with optimal transformation of flow
vortical pattern near a body. The control strategy may be directed as on creating
regular recirculation zones in near-wall flow as on its destruction to intensify flow
mixing in the region. In both cases, "intellectual"flow of fluid is created, in which
the vortices have been formed according to the control scheme and either theoretical
or semiempirical model predicting the vortex behavior [1]. Control technics will be
more effective, if one takes into account topological properties of the flow under
consideration. Here we use the standing vortex model to derive near-wall flow
topology when the local recirculation zone is simulated by a vortex of finite circula-
tion [2]. Motion of the vortex is described by a set of non-linear differential equations:

dxv
dt

= vx(xv, yv, t),
dyv
dt

= vy(xv, yv, t), (1)

where xv, yv are the vortex coordinates and vx, vy are the components of the vortex
velocity.

To build the velocity field in the region, we map the physical plane z into an
upper half-plane of the auxiliary plane ζ. Then the complex flow potential is the
superposition of that of uniform flow and Green’s function of the vortex near a flat

1Grant of NAS of Ukraine 2273/13 (0113U002978)
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wall. If the function ζ = f(z) realizes the conformal mapping, the following condition
of vortex equilibrium may be used to derive the critical points of flow:dΦ0

dζ

∣∣∣∣∣
ζ=ζv

+
Γv

4πηv

[(df
dz

)2
/(

d2f

dz2

)] ∣∣∣∣∣
ζ=ζv

− iΓv
4π

= 0, (2)

where Γv is the vortex circulation, ζv = (ξv, ηv) and Φ0(ζ) are the vortex coordinate
and uniform flow potential in ζ-plane respectively. From Eq. (2), two transcendental
equations for determining the standing vortex coordinates are derived. To calculate
the vortex circulation, this set has to be completed by an equation that follows from
physical conditions of the problem under consideration. For example, if the flow
boundary has a sharp edge, the unsteady Kutta condition can be involved.

The model was applied to studying the standing vortex dynamics in the angular
region and in a cross groove. The dependencies of the standing vortex circulation
Γv on the representative parameter of boundary irregularity were derived. It was
found also that standing vortex is characterized by its eigenfrequency which governs
the dynamic behavior of the vortex in the periodically perturbed flow. Periodic
oscillations of the flow velocity cause multi periodic large amplitude motion of
the standing vortex. The maximal amplitude of deviation of the vortex from its
stationary point depends on the external perturbation frequency in resonance man-
ner. Resonance flow perturbations in the regions bounded non-regular wall cause
intensification of fluid mixing in recirculation zones. They stimulate generation of
vorticity in sharp boundary edges, lead to chaotization of motion of both fluid
particles and small vortices, cause non-regular fluctuations of the flow.

The report based on the results of joint work "Dynamics of Vortices in Near-wall
Flows With Irregular Boundaries"with I.M. Gorban [3].
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Suppose F is a partially ordered field and L = ⟨L; +; ·⟩ is a linear algebra over
a field F . An algebra L over a partially ordered field F is called an algebra with a
lattice K-order 6 (see, for example, [1]) or a lattice K-ordered algebra if the following
conditions hold:

(1) ⟨L; +;6⟩ is a lattice ordered group [2];
(2) if x 6 y, then γx 6 γy for all elements x, y ∈ L and γ > 0, γ ∈ F ;
(3) from x > 0 it follows that x+ xy > 0 and x+ yx > 0 for all elements y ∈ L.
The notion of this order was defined in 1972 by V.M. Kopytov for Lie algebras

(see [3]). Moreover, in [3] V.M. Kopytov noted that this definition of an order can be
stated for arbitrary algebras over ordered fields. This concept was introduced by the
author and by E.E. Shirshova in [1], [4]. Namely, in these papers it was investigated
a generalization of a notion of a Kopytov’s order to linear algebras over ordered
fields.

In particular, in [4] it was proved that a necessary and sufficient condition for a
finite-dimentional associative algebra (a Lie algebra) over a linearly ordered field to
be a lattice K-orderable algebra is that this algebra be a nilpotent algebra.

Recall that an l-ideal I of a lattice K-ordered algebra L over a partially ordered
field F is called an l-prime ideal if for any nonzero l-ideals A and B in the factor–

algebra L/I the product AB = {x =
n=n(x)∑
i=1

aibi | ai ∈ A, bi ∈ B} is not equal to the

set {I} (see [1]). The intersection of all l-prime ideals in L is said to be the l-prime
radical of L (see [4]).

In this paper, following [5], we say that algebra is a B-radical algebra if this
algebra and its prime radical are equal. Using results of [4], we shall give the following
definition. A K-ordered algebra is called a Bl-radical algebra if its l-prime radical is
equal to this algebra.

Theorem 1. For any associative algebra (a Lie algebra) A over a linearly ordered
field such that A is a finite–dimentional nilpotent algebra it follows that A is a B-
radical algebra and A is a Bl-radical algebra.

Moreover, any finite–dimentional nilpotent associative algebra A is a radical by
Jacobson algebra.
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A multiplication on an abelian group G is a homomorphism µ : G ⊗ G → G.
A group G with a multiplication determined on it is called a ring on G. A mixed
abelian group G is called a MT -group, if every multiplication on its torsion part
can be uniquely extended to a multiplication on G. MT -groups were introduced in
[1] and were studied later by many algebraists.

In [2] L.Fuchs formulated the problem [2, problem 94] of describing absolute
radicals of abelian groups. An absolute Jacobson radical J∗(G) of an abelian group
G is the intersection of the Jacobson radicals of all associative rings on G. In this
work a description of the absolute Jacobson radical of an abelian MT -group will be
given.

Let G be an abelian group, and let Λ(G) be the set of all primes p such that the
p-primary component of G is nonzero.

Theorem 1. Let G be an abelian MT -group. Then J∗(G) =
∩

p∈Λ(G)

pG. Moreover,

there exists an associative and commutative ring on G, whose Jacobson radical is∩
p∈Λ(G)

pG.
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In this report results of some numeric experiments are given. In these experiments
zeroes and behavior of a module of certain functions defined by Dirichlet series on
a critical line are examined. These experiments are based on a numeric algorithm of
construction of Dirichlet polynomials that approximate Dirichlet series with expo-
nential speed. These algorothm was developed in paper [1].
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We consider a finitely generated Coxeter group

G = ⟨a1, . . . , an; a2i , (aiaj)
mij , i, j ∈ 1, n, i ̸= j⟩,

where mij are elements of symmetric Coxeter matrix, ∀i, j ∈ 1, n mii = 1, mij >
2 (i ̸= j).

One may construct graph Γ such that each pare of its vertices corresponds to
some generators ai and aj (i ̸= j) of G, and so, the edge corresponds to the relation
(aiaj)

mij = 1. If we obtain finite connected tree Γ in that way, group G is Coxeter
group with tree structure.
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It’s obvious that G is also a tree product

G =

⟨∏
s

∗Gs; relG1, . . . , relGs, . . . ; ai = a′i

⟩
,

where each factor Gs is two-generated Coxeter group like ⟨ai, aj; a2i , a2j , (aiaj)mij⟩
and isomorphisms ai = a′i amalgamate cyclic subgroups of order 2 like ⟨ai; a2i ⟩.

Various algorithmic problems of Coxeter groups with tree structure are discussed
in papers of V. N. Bezverkhnii and O. V. Inchenko. In papers [1, 2] a generalization
of Nielsen method (look [3]) is used to study free products with amalgamation and
HNN -extentions. In [1] they prove the following

Theorem 1. The problem of cosets intersection of finitely generated subgroups
H1 and H2 is solvable in the class of Coxeter groups with tree structure and there
exists an algorithm enumerating generators of the intersection w1H1 ∩ w2H2.

Definition 1 ([4]). We say that group G satisfies R-property if the normalizer
of each finitely generated subgroup H of G is finitely generated.

The author of [4] also uses Nielsen method to examine free products. In particu-
lar, she proves the following

Theorem 2. Suppose that factors Ai of free product G = A1 ∗ A2 satisfy R-
property. Then G inherits this property.

Using the same technique we assert the next fact:

Theorem 3. A normalizer NG(H) of finitely generated subgroup H of finitely
generated Coxeter group G with tree structure is finitely generated as well.
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We use a variant of the essential and inessential domains method [1] for solution
the problem indicated in the name of our paper. Note that the result on the uniform
distribution of the corresponding vectors near smooth manifold follows from it.

We consider a polynomial P = P (t) = ant
n + · · · + a1t + a0 ∈ Z[t], n > 4,

an ̸= 0, at the point t ∈ R when a height H(P ) = max(|an|, . . . , |a0|) is increased
and n is fixed. Let α1, α2, . . . , αn are the roots of P (t) and µi > 0 (i = 1, 2, 3, 4)
are fixed numbers. Take a parallelepiped T =

∏4
i=1 Ii =

∏4
i=1[ai, bi] ⊂ [−1/2, 1/2]4

where |Ii| = bi − ai = Q−µi when Q > Q0 > 0 and a setM = {(x1, x2, x3, x4) ∈ T :
|xi − xj| < 0, 01, i ̸= j, }. Suppose that T1 = T \M.

Introduce a class of polynomials Pn(Q) = {P : |an| ≫ H(P ), H(P ) 6 Q}. Let
An(T1, Q) is a vector set of α = (αi, αj, αk, αl), 1 6 i < j < k < l 6 n containing
the roots of P , P ∈ Pn(Q) such that: 1) αi, αj, αk, αl ∈ R, 2) α ∈ T1. Hence, the
taken roots are distinct. We prove

Theorem 1. If 0 < µi < 1/4 (i = 1, . . . , 4) then

♯An(T1, Q)≫ Qn+1−µ1−µ2−µ3−µ4 .

The proof of Theorem 1 is based on the construction of special integral polynomi-
als with the following conditions: 1) the values |P (t)| are small when (t, t, t, t) =
(x1, x2, x3, x4) ∈ B ⊂ T1 and a measure |B| is greater than 1

2
of the measure |T1|, 2)

|P ′
(t)| ≍ H(P ) = Q at the points of the set B.

From Theorem 1 we obtain

Theorem 2. Let u = f(x, y, z) is a continued function at a parallelepiped K =∏3
i−1Ki ⊂ [−1/2, 1/2]3. Suppose that J (Q, λ) = {(x, y, z, u) : x ∈ K1, y ∈ K2, z ∈

K3, |u − f(x, y, z)| < Q−λ, 0 < λ < 1/4}. Then there are > c(n)Qn+1−λ of the
vectors α in An(T1, Q) such that α ∈ J (Q, λ) where c(n) > 0 is a constant depending
only on n.

For proving of Theorem 1 we use the essential and inessential domains method
by Sprindz̆uk which is developed and improved by the representatives of the Number
Theory schools in Byelorussian Academy of Sciences (Minsk, Belarus) and University
York (York, UK) (1980 — 2014).
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A right diagonal act over the semigroup S is a set S×S where S acts as follows:
(a, b)s = (as, bs) for a, b, s ∈ S. A left diagonal act over S and a diagonal bi-act
over S are defined analogously. A subset A ⊆ S × S is called a generating set if
AS1 = S × S. A right diagonal rank of a semigroup S (denoted rdrS) is the least
cardinality of generating sets of (S×S)S. A left diagonal rank ldrS and a bi-diagonal
rank bdrS are defined analogously. Along with a right diagonal act we define a right
diagonal act of order n as (Sn)S. The least cardinality of generating sets of this act
we call a right diagonal rank of order n of the semigroup S and denote by rdrn S.

Attention to diagonal acts was caused by a question from [1]: are there infinite
semigroups which have a finite right diagonal act? It has turned out that there are
plenty of such semigroups. For example, in [2] it was shown that the transformations
monoid T (X) of an infinite set X, the monoid of partial transformations P (X) and
the monoid of binary relations B(X) have cyclic right, left and bi-diagonal acts.
Papers on diagonal acts were mostly devoted to conditions on semigroups to have
cyclic or finitely generated diagonal acts. In the paper [3] flatness properties of
diagonal act were studied.

Obviously, bdrS 6 rdrS, ldrS. Besides this inequality, diagonal ranks are inde-
pendent from one another. So, it was shown in [2] that the monoid I(X) of partial
bijections of an infinite set X has the following property: rdr I(X) = ldr I(X) =∞,
bdr I(X) = 1 which shows a relative independence of one-sided diagonal ranks
from a bi-diagonal rank. Let X be an infinite set, F (X) be a monoid of full finite-
to-one transformations (that is, no infinite subset is mapped to a single point),
multiplication of maps is from left to right. It was proved in [2] that rdrF (X) = 1
but ldrF (X) = ∞. This shows a mutual independence of right and left diagonal
ranks.

A lot of known at that time results on cyclic and finitely generated diagonal acts
are presented in [4]. We’ve extended a table of results from [4] with new results,
which are marked with stars.

However, right diagonal ranks of different orders are not independent. Consider
the following theorem.
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Semigroup S Non-trivial S, Infinite S, Non-trivial S, Infinite S,
cyclic right act? f.g. right act? cyclic bi-act? f.g. bi-act?

Finite No – No –
Commutative No No No No
Idempotent No No No No
With an identity No No ??? ???
Inverse No No Yes Yes
Completely regular No No No No
Completely simple No No No Yes
Completely No No No Yes
0-simple
Group No No No Yes
Cancellative No No No Yes
Right cancellative No No Yes* Yes
Left cancellative No No Yes* Yes
Bruck-Reilly No No No No
extension
Epigroup No* No* No* Yes
Periodic No* No* No* Yes
Locally finitely No No No* No*
Right invariant No* No* No Yes
with 1
Left invariant No* ??? No Yes
with 1

Таблица 1: Summary of results

Theorem 1. Let S be an infinite semigroup. Then rdrn S ≤ (rdrS)n for an odd
n and rdrn S ≤ (rdrS)n−1 for an even n.

The following theorem generalizes a number of known before results.

Theorem 2 ([7], theorem 4.8). Let S be an infinite semigroup satisfying some
non-trivial semigroup identity. Then the right diagonal act over S is not finitely
generated.

Under some natural conditions the rank of the Cartesian product of two semi-
groups is equal to the product of their ranks.

Theorem 3 ([7], theorem 2.6). Let S and T be semigroups each of which satisfies
one of the following:

(i) infinite with a finite right diagonal rank;

(ii) finite with a right identity.

Then rdr(S × T ) = rdrS · rdrT .

This theorem gives us a way to construct infinite semigroups of any diagonal
rank. Indeed, consider the Cartesian product of an infinite semigroup S such that
rdrS = 1 (say, T (X)) and a group of needed order.

An example of a semigroup such that bdrS = 1, bdr3 S = ∞ was presented in
[8].
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A right act over a semigroup S (or a right S-act) is a set X with an action of
the semigroup S on X, i.e. there is a mapping X × S → X, (x, s) 7→ xs satisfying
the condition x(st) = (xs)t for all elements x ∈ X, s, t ∈ S (see [5]). As we shall
not the left acts consider then we shall call the right acts simply acts.

The category of acts over a semigroup contains a great information on the
structure of the semigroup, it is similar to the fact that the category of modules
over a ring has a lot to say about the ring. In the works [1]–[4] the semigroups S
were investigated satisfying the following conditions on acts:

(∗) all the right S-acts are finitely approximated ;
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(∗∗) all the rightS-acts are approximated by the acts of n or less number of elements.

It was proved in [1] that a semigroup S satisfies the condition (∗∗) with n = 2
if and only if S is a semilattice (a commutative idempotent semigroup). In [2] it
was be established the periodicity of the semigroups satisfying the condition (∗∗),
and in [4] this assertion was strengthened: it turned out that such semigroup is
uniformly locally finite, i.e. for every natural number t the orders of the t-generated
subsemigroups are bounded in collection. In [2] and [3] the commutative and nil
semigroups with the conditions (∗) and (∗∗) were investigated.

Note that in view of the Birkhoff’s Theorem (which states that every algebra is
a subdirect product of subdirectly indecomposable algebras), for every semigroup S
the condition (∗) is equivalent to the following condition:

(∗′) all the subdirectly indecomposable S-acts are finite;

and the condition (∗∗) is equivalent to the condition

(∗∗′) |X| 6 n for every subdirectly indecomposable S-act X.

We will describe the abelian groups satisfying the conditions (∗) and (∗∗). We
use the additive record for them. For an abelian group A, we denote by t(A) its
torsion part, by tp(A) the p-component of the torsion part, by r0(A) the torsion
free rank (if A is a torsion free abelian group then the torsion free rank is called
simply the rank), and by exp(A) we call the exponent of the group A, i.e. the least
common multiple of the orders of its elements (the exponent exists if and only if
A is a bounded group, i.e. the orders of elements of the group A are bounded in
collection).

Theorem 1. An abelian group A satisfies the condition (∗∗) for some n if and
only if the orders of elements of the group A are bounded in collection. If exp(A) =
pα1
1 p

α2
2 . . . pαk

k where pi are distinct prime number then the orders of subdirectly
indecomposable unitary (resp., non-unitary ) A-acts are exactly the numbers of view
pβi (resp., pβi + 1) where i 6 k and β 6 αi.

Proposition 1. A torsion abelian group satisfies the condition (∗) if and only
if all its p-components are bounded groups.

An abelian group A is called locally free if all its p-localizations Qp ⊗A are free
Qp-modules (here Qp is the ring of all rational numbers whose denominators are
coprime with p). It is well known that torsion free abelian group A of finite rank is
locally free if and only if dimZp(A/pA) = r(A) for all prime numbers p.

Proposition 2. A torsion free abelian group satisfies the condition (∗) if and
only if it is a torsion free locally free group of finite rank.

Theorem 2. An arbitrary abelian group A satisfies the condition (∗) if and only
if the groups t(A) and A/t(A) satisfy the condition (∗).
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Quasi-Frobenius rings are the right self-injective rings with the minimum condi-
tion. The class of quasi-Frobenius rings contains semisimple rings with minimum
condition and all group algebras of finite groups (not necessarily semisimple) [1, 2].
Special role quasi-Frobenius rings and modules in the theory of linear codes over
rings and modules is shown in [3].

Everywhere bellow G is a multiplicative group with an identity element e, all
considered rings are the associative G-graded rings with unit 1, gr.mod − R is a
category of right G-graded R-modules, which objects are unitary right G-graded R-
modules, and morphisms are grading-preserving homomorphisms of the R-modules.
The graded analogues of standard definitions will be denoted by the prefix gr-. Thus,
a graded ring is called gr-Artinian (right) if it satisfies the descending chain condition
of the right graded ideals.

If M =
⊕

g∈GMg ∈ gr.mod−R and σ ∈ G, then σ-suspension M(σ) of M is the
module M with the grading M(σ)g = Mσg (g ∈ G).

For M,N ∈ gr.mod−R denote by HOMR(M,N)g the set of homomorphisms of
degree g, i.e. R-linear mappings such that f(Mh) ⊆ Ngh for all h ∈ G. By definition,

Homgr.mod−R(M,N) = HOMR(M,N)e,

HOMR(M,N)g = Homgr.mod−R(M,N(g)) = Homgr.mod−R(M(g−1), N)

and HOMR(M,N) =
⊕

g∈GHOMR(M,N)g is G-graded Abelian group.
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Definition 1. Graded ring will be called gr-quasi-Frobenius, if it is left and right
gr-Artinian and each its one-sided graded ideal is annihilator.

For characterization of the gr-quasi-Frobenius rings we need some definitions.
The definition of a gr-generator was given in [4]. Dually , using [5, lemma 2], we

define the gr-cogenerator.

Lemma 1. For graded R-module QR the following conditions are equivalent:
1) Q is a cogenerator for mod−R;
2) for any nonzero morphism f ∈ HOMR(L,N), there exists h ∈ HOMR(N,Q)

such that hf ̸= 0;
3) Kerψ =

∩
f∈HOMA(M,U) Kerf = 0 for every graded module MR;

4)
∏

g∈GQ(g) is cogenerator for gr.mod−R.

A graded moduleQR will be called gr-cogenerator for gr.mod−R, if the conditions
of Lemma 1 are correct.

We have the following proposition.

Proposition 1. Let Q be a gr-injective module. Then Q is gr-cogenerator if and
only if any gr-simple module may be embedding in Q(g) for some g ∈ G.

The left and right gr-Artinian ring will be called gr-Artinian.

Theorem 1. The following conditions for the graded ring R are equivalent:
1) R is gr-quasi-Frobenius.
2) R is gr-Artinian, graded Jacobson radical Jgr(R) is left and right annihilator

ideal and each graded minimal one-sided ideal is annihilator ideal.
3) R is gr-Artinian and right (left) gr-self-injective .
4) R gr-Artinian and it is gr-injective gr-cogenerator as right (left) R-module.

Follow theorem characterizes gr-quasi-Frobenius rings in the language of the
theory of representations.

Theorem 2. The following properties of the graded ring R are equivalent:
1) R is gr-quasi-Frobenius.
2) Every gr-injective right R-module is gr-projective.
3) Every gr-projective right R-module is gr-injective.

Since any gr-projective module is projective, and any injective module is gr-
injective (see, for example, [6, Chapter 2]), then from theorem 2 we get that every
quasi-Frobenius ring is gr-quasi-Frobenius.
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Let π be a finite projective plane, that is coordinatized by semifieldW (a semifield
plane). The left nucleus of semifield W is a subset

Wl = {x ∈ W | x(yz) = (xy)z ∀y, z ∈ W}.

Wl is a subfield of W and the semifield W is a vector space over Wl. The affine
points of a plane π corresponds to the vectors (x, y), where x, y ∈ W , the affine lines
corresponds to cosets of follows subgroups:

V∞ = {(0, y) | y ∈ W},
Vm = {(x, xθm) | x ∈ W}, m ∈ W.

Here the set of matrices R = {θm | m ∈ W} is a regular set of semifield plane
(spread set). The set R contains zero and identity matrices and also it satisfies to
follows condition: det(θi − θj) ̸= 0 for all i ̸= j. In particular, all non-zero matrices
of R are nondegenerated. The properties of a regular set determines the properties
of a semifield plane and its automorphisms group.

1Grant RFFI №12-01-00968
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Let π(W,R) be a semifield plane that defined by linear space W and regular set
R. If the semifield planes π(W,R) and π(W,R′) corresponds to the same linear space
W , that isomorphism of these planes is determines by nondegenerated semi-linear
transformation of a space W . The following results are proved.

Theorem 1. Let W be a n-dimensional linear space over the field GF (p) (p be
prime), π1 = π(W,R) and π2 = π(W,R′) be the semifield planes of order pn. The
plane π1 is isomorphic to π2 if and only if there exist such nondegenerated linear
transformation α of the linear space V = W ×W ,

α =

(
A 0
0 B

)
,

that the product A−1θ(m)B is in the regular set R′ for all matrix θ(m) ∈ R.

Theorem 2. Let π be the semifield plane of order pn. If W is n-dimensional
linear space over the field GF (p) then there exist a semifield plane π(W,R) that is
isomorphic to π.

Using these results we created the computer program complex to verify are two
semifield planes of the same order isomorphic. For this verification we can use the
linear space over the prime order field and construct the matrix representation of
regular set for each plane. As a regular set is also a linear space over GF (p), that
the check of isomorphism condition from theorem 1 is necessary only for its base
elements.

We construct the examples of semifield planes defined by linear space over the
prime order field that are isomorphic to some known semifield planes of rank 2 over
GF (4), GF (8), GF (9).

Siberian Federal University
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EMBEDDED GRAPHS ON RIEMANN SURFACES:
THEORY AND APPLICATIONS1

E. M. Kreines (Moscow)
elena msu@mail.ru

The talk is based on the results of our joint works with professors N. Ya. Amburg
and G.B. Shabat.

Classically Grothendieck dessin d’enfant is an embedded graph Γ on a smooth
compact oriented surface M such that the complement M \Γ is homeomorphic to a
disjoint union of open discs, see [1, 2, 4]. Each Grothendieck dessin d’enfant is in a
natural correspondence to a unique (up to a linear-fractional transformation) Belyi

1The work is partially supported by the RFBR research grant 12-01-00140
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pair. Belyi pair is an algebraic curve together with a non-constant meromorphic
function on this curve with at most 3 critical values. This correspondence provides
new approaches to construct and retrieve the connections between different branches
of mathematics and mathematical physics, see [3, 4]. Among them there are connec-
tions between combinatorial and topological objects, visualization of finite group
action, study of moduli space of algebraic curves, etc.

In the talk we provide the introduction to the theory of dessins d’enfants and
formulate some new results. In particular, we introduce and investigate embedded
graphs on unions of surfaces, their properties and correspondence between graphs on
unions of surfaces and meromorphic functions on reducible curves. Shabat polynomi-
als for dessins d’enfants on unions of surfaces will be discussed. Series of concrete
examples will be provided.
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TO THE PROBLEM OF THE INTEGRITY OF THE
ARTIN’S L-FUNCTIONS

V. Krivobok, E. Setsinskaya, D. Stepanenko (Saratov)
unikross@mail.ru

Consider Artin’s L-function

L(s, χ) = L(s, χ,K/k) =
∏

unbranched ℘

∣∣∣∣E −M ([
K/k

℘

])
N(℘)−s

∣∣∣∣−1

, (1)

where
[
K/k
℘

]
– Frobenius automorphism of the extension K/k, related to ℘.
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In 1930 Artin formulated conjecture which states that in case of non-primary
character Artin’s L-function (1) is integral function in the whole complex plane [1].

In 1947 Brauer proved that Artin’s L-function is meromorphic[2].
This article discusses result which states that Artin’s L-function is meromorphic

function, all it’s poles lay on the critical line and in some cases they coinside with
roots of Dedekind zeta-functions of some algebraic number fields.
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ON ASPHERICITY OVER SUBPRESENTATIONS
O. V. Kulikova (Moscow)

olga.kulikova@mail.ru

Let {Pi | i ∈ I} be a collection of subpresentations of a group presentation
P , and let Xi denote the collection of all based spherical pictures over Pi, i ∈ I.
We shall say that a set Y of based spherical pictures over P generates π2P over
{Pi | i ∈ I} if Y∪

∪
i∈I Xi generates π2P . We will say that P is (A) over {Pi | i ∈ I}

if π2P is generated by the empty set over {Pi | i ∈ I}. (See [1], [2] for details about
pictures and their connection with π2P .)

Let us consider the free group F with a basis x and a set r =
∪n

i=1 ri of cyclically
reduced words on x∪x−1, where r1, . . . , rn are mutually disjoint sets. Suppose that
no word of r is trivial, nor is a conjugate of any other word of r or its inverse. Let R
be the normal closure of r in the free group F and G = F/N be the group defined
by the presentation P = ⟨x | r⟩. For i = 1, . . . , n, let Ri be the normal closure of ri
in F , Pi = ⟨x | ri⟩, Ni =

∏
j ̸=iRj.

Theorem 1. If a set Y of based spherical pictures over P generates π2P over
{Pi | i = 1, . . . , n}, then for i = 1, . . . , n, the group Ri∩Ni

[Ri,Ni]
is generated by the set

{WVYW
−1[Ri, Ni] | Y ∈ Y,W ∈W},

where VY is a label of a simple closed path in a based spherical picture Y , separating
the disks with ri-labels and the disks with (r − ri)-labels, W ⊆ F is a set of
representatives of all the cosets of N in F .



94 XII International conference

Note (see [3]) that VY [Ri, Ni] is the image of < σY >∈ π2(P), where σY is a
sequence, represented by a picture Y ∈ Y, under a G-homomorphism

ηi : π2(P)→ Ri ∩Ni

[Ri, Ni]
,

defined as follows: ηi(< σ >) = V [Ri, Ni], where < σ >∈ π2(P) and V is the product
(taken in order) of the elements of σ of the form USϵU−1, where S ∈ ri, ϵ = ±1,
U ∈ F .

The family {R1, . . . , Rn} is said to be independent if

Ri ∩Ni = [Ri, Ni]

for i = 1, . . . , n. This and related notions have been studied in [4, 5, 6, 7, 8]. For
example [4, 5, 6], if {R1, . . . , Rn} is independent, then P is (A) over {Pi | i =
1, . . . , n}. The inverse statement for n = 2 is shown in [4]. From Theorem 1 we have
the following generalization.

Corollary 1. If P is (A) over {Pi | i = 1, . . . , n}, then {R1, . . . , Rn} is
independent.
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CONTROL PROBLEM IN COEFFICIENTS FOR
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In this paper we study an optimal control problem for a nonlinear monotone
Dirichlet problem where the control is taken as L∞(Ω)-coefficient of ∆p-Laplacian.
Namely, we consider the following minimization problem:

Minimize
{
I(u, y) =

∫
Ω

|∇y(x)−∇yd(x)|p dx
}

(1)

subject to the constraints

u ∈ Aad ⊂ L∞(Ω) ∩BV (Ω), y ∈ W 1,p
0 (Ω), (2)

−div
(
u|∇y|p−2∇y

)
= f in Ω, (3)

y = 0 on ∂Ω, (4)

where Aad is a class of admissible controls and f ∈ W−1,q(Ω), yd ∈ W 1,p
0 (Ω), q =

p/(p− 1).
To be more precise, we define the class of admissible controls Aad as follows

Aad =
{
u ∈ BV (Ω) ∩ L∞(Ω)

∣∣∣
TV (u) 6 γ, ∥u∥L1(Ω) = m, α 6 u(x) 6 β a.e. in Ω

}
, (5)

where α, β, γ, and m are given positive constants such that 0 < α 6 β < +∞ and
α|Ω| 6 m 6 β|Ω| and

TV (f) :=

∫
Ω

|Df |

= sup
{∫

Ω

f(∇, φ)RN dx : φ ∈ C1
0(Ω;RN), |φ(x)| 6 1 forx ∈ Ω

}
.

It is clear that Aad is a nonempty convex subset of L1(Ω) with empty topological
interior.
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Our main goal is to derive first order optimality conditions and provide their
substantiation. We propose some ideas and new results concerning the differentiabili-
ty properties of the Lagrange functional associated to considered control problem.
Also, the obtained adjoint boundary value problem is not coercive and, hence, it may
admit infinitely many solutions. That is why we concentrate not only on deriving of
the adjoint system, but also, following the well-known Hardy–Poincaré Inequality,
on formulation of sufficient conditions which would guarantee the uniqueness of the
adjoint state to the optimal pair.

We show, that if under mentioned conditions (u0, y0) ∈ L∞(Ω)×W 1,p
0 (Ω) is an

optimal pair to problem (2)–(5), then there exists an element ψ ∈ W 1,p
0 (Ω) such that

the following system holds true:∫
Ω

(u− u0)
(
|∇y0|p−2∇y0,∇ψ

)
RN dx > 0, ∀u ∈ Aad, (6)

−div
(
u0(x)|∇y0|p−2∇y0

)
= f in D′(Ω), (7)

−div

(
u0|∇y0|p−2

[
I + (p− 2)

∇y0
|∇y0|

⊗ ∇y0
|∇y0|

]
∇ψ
)

= p div
(
|∇y0 −∇yd|p−2 (∇y0 −∇yd)

)
in D′(Ω). (8)
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PRODUCTS WITH THESE CHARACTERS
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Let K be a finite extension of rational numbers field and let χ be a finite-valued
character defined on a semigroup of integer ideals of ring of integers of K.

We call χ generalized if

1. χ(p) ̸= 0 for almost all prime ideals p;

2. S(x) =
∑
a,

N(a)6x

= αx+O(1),

Note that all Dirichlet characters of K satisfy these conditions when this field is
a circular extension of a field of rational numbers.

For generalized characters over numerical fields a conjecture similar to Chudakov
hypothesis for generalized numerical characters [1] is proposed: a generalized charac-
ter over numerical field K is a Dirichlet character of this field.
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Authors hope to obtain analytical solution for this problem. To support that a
new result on analytical properties of Euler products for generalized characters is
provided in this report.

Theorem 1. Let χ be a generialized character over K. Then the following Euler
product:

f(s) =
∏
p

(
1− χ(p)

N(p)s

)−1

, s = σ + it

defines a function holomorphic in almost all points of σ > 0 semiplane, possibly
except of s = 1, where it can have a pole of order 1. On σ = 0 boundary of the
semilplate f(s) does not have pole-like points, that is, points s = it such that |f(σ+
it)| → ∞ when σ → 0.
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ON A CERTAIN PROOF OF CHUDAKOV HYPOTHESIS
IN CASE OF PRINCIPAL GENERALIZED CHARACTERS
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In 1950 N. G. Chudakov suggested hypothesis that predicated that finitely valued
numerical character h(n) that satisfies conditions

1. h(p) ̸= 0 almost for all primes p;

2.
∑
n6x

h(n) = αx+O(1),

is a Dirichlet character [1], [2].
Character that satisfies conditions 1 and 2 is now known as generalized character.

In case of α ̸= 0 it is called principal generalized character, in other cases —
nonprincipal. Chudakov hypothesis for principal characters was proved by V. V. Gla-
zkov in 1964 [3], [4]. The proof was performed with elementary method based on
examination of target domain of the generalized character.

A new proof of Chudakov hypothesis in case of principal generalized characters
is given in this report. It is based on examination of Diriclet series with generalized
characters.



98 XII International conference

REFERENCES

[1] Chudakov N. G., Linnik U.V. On a certain class of completely-multiplicated
functions.// DAN USSR, 1950, vol. 74, iss. 2, pp. 193–196.

[2] Chudakov N. G., Rodosskij K. A. On a generalized character. // DAN USSR,
1950, vol. 73, iss. 6, pp. 1137–1138.

[3] Glazkov V. V. On a generalized characters.// Some questions of field theory:
collection of articles — Saratov: Saratov University Press, 1964, pp. 67–78.

[4] Glazkov V. V. Characters of a multiplicated semigroup of naturals // Number
theory researches: interuniversity collection — Saratov: Saratov University Press,
1868, iss. 2, pp. 3–40.

Saratov State University

UDC 511.43

PARALLELOGRAMM SUBSTITUTIONS AND TORIC
TILINGS INTO BOUNDED REMAINDER SETS
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Let α ∈ Rd be a vector that coordinates are linearly independed with one over
Z. This vector generates rotation of d-dimensional torus Td:

Sα : x→ x+ α mod Zd.

Thus according to the Weyl theorem the sequence {Snα(0)} is uniformly distributed
on torus Td. The set X ⊂ Td is called bounded remainder set if there exist a constant
C > 0 such that

|r(α,X, n)| ≤ C

for any n. Here

r(α,X, n) = ♯{k : 0 ≤ k < n, Skα(0) ∈ X} − n(X)

isa remainder terms of the uniform distribution problem.

Theorem 1. Let Td:

Td =
R⨿
i=1

Ri ⊔
G⨿
i=1

Gi ⊔
B⨿
i=1

Bi

be a toric tiling that consists of sets of three types. Suppose that
1) Sα(Ri) = Ri+1, Sα(Gi) = Gi+1, Sα(Bi) = Bi+1 for any acceptable i.
2) There exist rotations SR, SG и SB such that SR(Sα(RR)) = R1, SG(Sα(GG)) =

G1 and SB(Sα(BB)) = B1.
Then all sets Ri, Gi, Bi are bounded remainder sets with effectively computated

C.
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Further we consider a new approach to generating tilings satisfing the condition
of the theorem. This approach is based on parallelogramm substitutions from [1].
Particularly we study parallelogramm substitution from the definition of well-known
Rauzy fractal. It is proved that this substitution produce a ssequence of toric tilings
into bounded remainder sets. Moreover the estimate of the remainder term does not
depend on the number of iteration. Also the prove a similar result for continuous
deformations of this construction.
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Dirichlet series

f(s) =
∞∑
n=1

an
ns
, s = σ + it (1)

is corresponded to power series (with same coefficients)

g(z) =
∞∑
n=1

anz
n. (2)

Proof of the following theorem is given in this report.

Theorem 1. In a class of Dichlet series with finite abscissa of convergence next
conditions are equivalent:

1. power series (2) determines a function with pole of order k in z = 1;

2. Dirichlet series (1) determines a function meromorphic on a complex plane.
This function can have poles of order 1 at s = 1, 2, . . . , k, and at s = k it
definitely has a pole. Module of the function meets following condition in the
left half-plane:

|f(s)| = O
(
e|s| ln |s|+A|s|) ,

where A — some positive constant.
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ON CONGRUENCE LATTICES OF ALGEBRAS OF ONE
CLASS OF UNARS WITH MAL’TSEV OPERATION
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A lattice ⟨L,∨,∧⟩ with a zero 0 and a unit 1 is a complemented lattice if for any
element x ∈ L there is an element x′ ∈ L (a complement of the element x) such
that x ∧ x′ = 0 and x ∨ x′ = 1. If for any a, b ∈ L with a ≤ b the interval [a, b] is a
complemented lattice, then L is a relatively complemented lattice.

If each element of the lattice has exactly one complement, it is an uniquely
complemented lattice.

A complemented distributive lattice is a Boolean lattice.
In [1] the unar with Mal’tsev operation was introduced as an algebra with one

ternary operation p that satisfies the Mal’tsev identities p(x, y, y) = p(y, y, x) =
x and has one unary operation permutable with p. Thus the unar with Mal’tsev
operation is an algebra with an operator. Ternary Mal’tsev operation can be defined
on any unar so that it permutes with the unary operation.

The ternary operation p is defined in [1] as follows. Let ⟨A, f⟩ be an arbitrary
unar and x, y ∈ A. For any element x of the unar ⟨A, f⟩ by fn(x) we denote the result
of f applied n times to an element x. Also f 0(x) = x. Assume that Mx,y = {n ∈
N0 | fn(x) = fn(y)} and also k(x, y) = min Mx,y, if Mx,y ̸= ∅ and k(x, y) = ∞, if
Mx,y = ∅. Assume further

p(x, y, z)
def
=

{
z, if k(x, y) 6 k(y, z)
x, if k(x, y) > k(y, z).

(1)

Congruence properties of unars with Mal’tsev operation p(x, y, z) defined by a
rule (1) were studied in [2] - [4].

Theorem 1. Let ⟨A, f, p⟩ be an unar with Mal’tsev operation p(x, y, z) defined
by the rule (1). The lattice Con⟨A, f, p⟩ is a complemented lattice if and only if
either the operation f is injective, or the unar ⟨A, f⟩ has one-element subalgebra
{a} such that f(x) = a for all x ∈ A.

Corollary 1. Lattice Con⟨A, f, p⟩ is an uniquely complemented lattice (Boole-
an lattice, relatively complemented lattice) if and only if Con⟨A, f, p⟩ is a comple-
mented lattice.

Corollary 2. Lattice Con⟨A, f, p⟩ is a complemented lattice if and only if the
algebra ⟨A, f, p⟩ is simple.
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STANDARD BASES OF T−IDEALS
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Let M be any T−ideal in free associative algebra over a field of the zero characte-
ristic from a countable set of variables, numbered by natural numbers. Variables are
compared on their indexes, and multilinear words (monoms) — lexicographically. It
is known that the ideal M is generated by its multilinear elements. We say, that
the multilinear word v "covers" the multilinear word u, if there is an isoton action
of variables to themselves, in which the line of images of variables from u is a
subsequence in the line of variables from v. In a case, when u is the higher monom
in multilinear element from the ideal M, than word v can be "reduced" modulo M.
Thus, in a set of the multilinear elements from M it is possible to construct the
standard basis in clear sense, in particular, to construct the reduced standard basis
[1]. There is a hypothesis that basis is finite. As "test of the pen" the hypothesis is
confirmed for T−ideal of identities of upper triangular matrixes, T−ideal of a Lie
nilpotency with index 4, metabelian T−ideal [2], [3]. Most likely the hypothesis can
be confirmed for non-matrix T−ideals.
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Let s = σ + it be a complex variable and α, 0 < α ≤ 1, be a fixed parameter.
As usual, denote by ζ(s) and ζ(s, α) the Riemann zeta- and Hurwitz zeta-functions,
respectively.

It is well known that the functions ζ(s) and ζ(s, α) with transcendental or
rational parameter α are universal in the Voronin sense, i. e., their shifts ζ(s + iτ)
and ζ(s+ iτ, α), τ ∈ R, approximate any analytic function. H. Mishou in [3] proved
a joint universality theorem for the functions ζ(s) and ζ(s, α). Denote by K the
class of compact subsets of the strip D = {s ∈ C : 1

2
< σ < 1} with connected

complements, and let H0(K) and H(K), K ∈ K, be the classes of continuous non-
vanishing and continuous functions on K, respectively, which are analytic in the
interior of K. Moreover, let measA denote the Lebesgue measure of a measurable
set A ⊂ R. Then the Mishou theorem is the following statement.

Theorem 1. Let K1, K2 ∈ K, and that f1(s) ∈ H0(K1) and f2(s) ∈ H(K2). Let
the number α be transcendental.Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζ(s+ iτ)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α)− f2(s)| < ε

}
> 0.

The latter theorem is of the so-called continuous type, in that theorem, for
approximation of analytic functions, the shifts ζ(s + iτ) and ζ(s + iτ, α) when τ
varies continuously in the interval [0, T ] are used. However, for the functions ζ(s)
and ζ(s, α), also a discrete universality is known. In this case, for approximation
of analytic functions, discrete shifts ζ(s + ikh) and ζ(s + ikh, α), where h > 0 is a
fixed number and k ∈ N0 = N∪{0}, are used. More precisely, the following discrete
universality theorems are known.
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Theorem 2. Let h > 0 be an arbitrary number. Suppose that K ∈ K and
f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε

}
> 0.

Theorem 2 was obtained by A. Reich in [5], and by B. Bagchi [1] by a different
method.

Theorem 3. Suppose that the number α is transcendental or rational ̸= 1, 1
2
.

In the case of rational α, let the number h > 0 be arbitrary, while in the case of
transcendental α, let the number h > 0 be such that the number exp

{
2π
h

}
is rational.

Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ m ≤ N : sup

s∈K
|ζ(s+ imh, α)− f(s)| < ε

}
> 0.

Theorem 3 with rational parameter α, under slightly different hypothesis on the
set K, was proved in [1], and by a different method, in [6]. The case of transcendental
α follows from a discrete universality theorem for periodic Hurwitz zeta-function
obtained in [2].

Our aim is a discrete analogue of Theorem 1. Define the set

L(P, α, h) =
{

(log p : p ∈ P), (log(m+ α) : m ∈ N0),
2π
h

}
,

where P is the set of all prime numbers.

Theorem 4. Suppose that the set L(P, α, h) is linearly independent over the field
of rational numbers Q. Let K1, K2 ∈ K, and f1(s) ∈ H0(K1), f2(s) ∈ H(K2). Then,
for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ζ(s+ ikh)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ ikh, α)− f2(s)| < ε

}
> 0.

For example, by the Nesterenko theorem [4], it is known that the numbers π
and eπ are algebraically independent over Q. Therefore, the set L(P, α, h) is linearly
independent over Q with α = π−1 and rational h.

The proof of Theorem 4 is based on a limit theorem on weakly convergent
probability measures in the space of analytic on D functions H(D) equipped with
the topology of uniform convergence on compacta. Let γ = {s ∈ C : |s| = 1} ,

Ω1 =
∏
p∈P

γp, and Ω2 =
∏
m∈N0

γm,
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where γp = γ for p ∈ P, and γm = γ for m ∈ N0 and Ω = Ω1 × Ω2. Then Ω is
a compact topological Abelian group. Therefore, on (Ω,B(Ω)), where B(S) stands
for the class of Borel sets of the space S, the probability Haar measure mH can
be defined. This gives the probability space (Ω,B(Ω),mH). Denote by ω1(p) the
projection of an element ω1 ∈ Ω1, p ∈ P, by ω2(m) the projection of an element ω2 ∈
Ω2, m ∈ N0, and denote the elements of Ω by ω = (ω1, ω2). Now on the probability
space (Ω,B(Ω),mH), define the H2(D)-valued random element ζ(s, α, ω1, ω2) by the
formula

ζ(s, α, ω1, ω2) =

(∏
p∈P

(
1− ω1(p)

ps

)−1

,
∞∑
m=0

ω2(m)

(m+ α)s

)
,

and denote by Pζ its distribution. Then we have the following theorem.

Theorem 5. Suppose that the set L(P, α, h) is linearly independent over Q. Then
the probability measure

1

N + 1
# {0 ≤ k ≤ N : (ζ(s+ ikh), ζ(s+ ikh, α)) ∈ A} , A ∈ B(H2(D)),

converges weakly to Pζ as N →∞.
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Introduction. A modification (in the algebraic sense) of Buchberger algorithm is
proposed in the note. Consideration is kept on the conceptual level. The modification
allows parallel computing (run) and does not exclude simultaneous using with the
other parallel modifications proposed earlier.

Computation of Grobner Basis (GB ) is one of the central points of the present
computing algebra and geometry. Bases are used in the connection to solutions of the
algebraic equations, analysis of algebraic varieties and so on. Thus the computations
of GB represent significant scientific and practical interest. But this computations
request significant computational resources (very often) what exceeds resources of
the modern technology (often). In this regard needs to develop new approaches.

In the present time for computing of GB the Buchberger Algorithm is used (and
it’s manifold modifications) mainly. There are numerous papers dedicate to the
Buchberger Algorithm and it’s optimization, though a volume of the computation
continues to stay very vast.

Touching modern computers we note that the growth of computing power flows
at the expense of the growth of the number computer cores (up to some decades
and hundreds of thousands) mainly. Therefore for using of the computing power
completely it is necessary to used parallel algorithms otherwise resources of the
computers will not work in practice.

Touching the Buchberger Algorithm we make the next note. Usually the tasks
of the enumeration nature are parallelized sufficient simply. It is not related to the
Buchberger Algorithm. There is a point of view that Buchberger algorithm is very
heavy for parallelize (the reduction of S − pairs is connate reciprocal). Here it can
be noticed the Jean-Charles Faugere work (algorithm F4) though this work have a
program character sooner then algebraic.

Generally it is known very well that the acceleration obtaining on multiprocess-
or computer is not more then liner (with respect to the number of the processors).
Therefore the solving of the problem of computation of Grobner Basis is not associa-
ted with the multiprocessor computers though it is clear that if there are big
number of processors and a good parallel algorithm then the acceleration can be
very significant.

Proposed algorithm. Further we describe the general arrangement of the
proposed algorithm shortly. The proposed approach is settled on the next fact: it is
known that a process of the computing and a result of the Buchberger Algorithm
depends on the choice of a monomial ordering.

Let us choose two (for simplicity) distinct monomial orderings previously: α and
β. Further the algorithm initiates four processes (threads in the program terminolo-
gy): A, B, A′, B′. The first process A calculates GB (with the Buchberger Algorithm)
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in line with monomial ordering α. The second process B calculates GB in line with
monomial ordering β.

The process A′ executes the next operations. Let us denote by Lαn and Lβn the
sets of S-pairs which obtained the processes A and B respectively towards the n-th
step. On the step n1 > 0 (and then on steps n2, n3, . . . ) the process A′ copies the
sets Lαn1

and Lβn1
and then executes the reduction of the set Lαn1

∪ Lβn1
(in line with

monomial ordering α). Then the process A′ adds to the process A the result Rα
n1

of
the reduction. The process B′ executes analogous calculates for the process B (adds
to the process B the result Rβ

n1
of it’s reduction).

Thus the process A obtains periodical makeup from the process B. The analogous
computing runs for B (from the process A). Loosely speaking we calculate GB from

”
distinct directions“.

Note that successive (not parallel) algorithms changing a monomial ordering from
time to time are considered. However the optimality of the choice of an ordering and
times is not fully clear. Presumably, these algorithms are closest to the the proposed
algorithm.

As compared with the algorithms considered previously the proposed algorithm
considered in this note is more radical: it calculates GB in line with distinct monomial
orderings simultaneously and makes an exchange of information (of S-pairs) between
them intermittently.

This algorithm can be considered as (partial) parallelization of GB. As the
every process will be try to reduce degree of it’s major variable primarily then
intuitively the general process of the reduction will be run more intensive. This
can be considered as a measure to abridge a number of S-pairs. According to the
author it is enough interestingly to calculate GB simultaneous with degree monomial
orderings.

Note the philosophical aspect. There are tasks in the theory of Grobner Basis that
monomial ordering (using in during calculation) is not important for a result (for
example consistency of systems). In this case the asymmetry calculation manifests
clearly particularly. Taking several monomial orderings we symmetrize calculations.

The proposed modification must be tested very meticulous of course. Also it is
necessary to determine the rational scheme, line up optimal parameters and so on.
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A ring S = (S,+, ◦) with identity e ̸= 0 is said to be a semifield if S∗ = S \{0} is
a loop, i.e., each of the equations a◦x = b and y◦a = b (a, b ∈ S, a ̸= 0) is uniquely
solvable. Weakening double-sided distributivity in S to left or right one we obtain a
quasifield. A quasifield is called proper, if it is not a field. When S is finite, then the
identity e additively generates a subfield ≃ Zp of prime order p and the order of S
is primary. It is well-known that any projective translation plane π of any order pn
can be constructed by using n-dimensional space W over Zp, as a coordinatizing set
of π. Using also a spread set of π we may to equip W by structure of a quasifield.
The plane is said to be a semifield plane if W is a semifield. The plane is Desargues
if W is a field. See monographs of Hughes (1973) and Lüneburg (1980).

Closely related problems of the construction and classification of different classes
of finite non-Desargues translation planes and quasifields are being studied since in
first of the last century; researches use computer calculations from 1950-th. It is
well-known that semifield planes are isomorphic if and only if their semifields are
isotopic. In accordance with Knuth [1] it is true the theorem: A proper semifield of
order pn exists iff n ≥ 3, pn ≥ 16.

Unlike the finite fields, the structure of finite semifields and quasifield, even of
the small orders, has been little studied. (Handbook (2007, [2]); see also Wene’s
problem [3] and Podufalov’s questions 9.43, 10.48, 11.76, 11.77, 12.66 in [4]). On the
other hand, it is unknown even possible orders of maximal subfields and the number
of subfields with fixed order. It is proved

Theorem 1. For every prime p > 2 the minimal subfield F of any proper
semifield S of the order p3 is a maximal subfield. Also, if x ∈ S \ F , then {e, x, x2}
is F -base in S, at that xx2 ̸= x2x or S is a commutative and xx3 ̸= x2x2.

The integer n ≥ 1 is said to be an order of an element s ∈ S∗ if n is smallest
integer such that n-th power of s equals e for at least one of the brackets setup; if
such n does not exist, then the order is considered infinite. The set of the orders of
all elements of a loop is said to be a spectrum.

Also, the right principal powers sn) (n ∈ Z, n ≥ 0) is determined in [5] by
recursively: s0) = e, sn+1) = sn) ◦ s. A loop is called right cyclic or right primitive,
if its exhaust right principal powers of some element; otherwise loop is called right
acyclic. The left principal powers s(n is defined analogously.

For a finite semifield or quasifield S we study the following questions.

(A) Find maximal subfields of S and spectrum of loop S∗.
(B) When loop S∗ is singly generated ?
(C) Wene’s conjecture [3]: Every finite semifield is (right)primitive.

In according with Rau [6], one of the Knuth semifields of order 32 yields a
counterexample to the Wene conjecture. We proved
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Theorem 2. (i) There exists a semifield P of order 32 which has a unique
maximal subfield M of order 4. Every element x ∈ P \M generates loop P ∗.

(ii) There exists a quasifield Q of order 16 such that each element is in a subfield
of order 4.

Theorem 3. Loop S∗ for a proper semifield of order 27 is right primitive. The
spectrum of loop S∗ coincides with {1, 2, 5, 7, 8}.

Using the right powers of elements of any loop we may consider its right spectrum.
Then the right spectrum of the loop of Theorem 3 coincides with {1, 2, 13, 26}.

Evidently that spectrum of loop Q∗ for the quasifield Q from Theorem 2, (ii),
coincides with {1, 3}. Also, we may choose a semifield P in Theorem 2, (i), such
that spectrum of loop P ∗ coincides with {1, 3, 4, 5, 6, 7, 8}.
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At the beginning of the last century I. Shur found the largest dimension of abeian
subgroups in the groups SL(n,C). These groups form the series of simple complex
Lie groups. I. Shur proved that for n > 2 abelian subgroups of largest dimension are
transformed to each other by automorphisms. In 1945 A.I. Mal’cev [1] pointed out the
problem of description of abelian subgroups of largest dimension in the rest simple,
and so, semisimlpe complex Lie groups. He solved this problem by the transition
to the Lie algebras LΦ(C), corresponding to the root systems Φ. Then he used the
reduction to the same problem for the maximal nilpotent subalgabra. In terms of
Chevalley algebras this problem may be formulated as the following one:

to describe abelian subalgebras of largest dimension in the nilpotent subalgebra
NΦ(C) with the basis {er | r ∈ Φ+} of the Chevalley algebra of type Φ.

Problem (A) of description of large abelian subgroups in a group G of Lie type
over a finite field goes back to the Mal’cev problem. (Given a group-theoretic
property P , we recall that every P-subgroup of largest order in a finite group is a
large P-subgroup). We transfer the worked out methods for the investigation of the
following generalized problems.

A. I. Mal’cev generalized problem: to descripe abelian subalgebras of largest
dimension in the Chevalley algebra LΦ(K) over an arbitrary field K.

The generalized reduction problem: to describe abelian subalgebras of largest
dimension in the subalgebra NΦ(K) of the Chevalley algebra LΦ(K).

Similarly to the scheme of A. I. Mal’cev, Problem (A) is reduced to the analogous
problem for the unipotent radical U of a Borel subgroup in G.

More exactly, a large abelian subgroup of the group G of Lie type over a finite
field is a large abelian unipotent subgroup or a one of maximal tori in G. R. Carter
and D.I. Deriziotis found maximal tori in G in 1978 – 1984. Problem (B) on the
description of the set A(U) of large abelian subgroups in U and of the subset AN(U)
of normal subgroups in U was solved in the middle 1980th in the works of M.J.J.
Barry and W.J. Wang for the classical types. For the rest groups G this problem
pointed out A.S. Kondrat’ev in the survey [2, Problem (1.6)].

Let U = UG(K) be a unipotent subgroup of a Chevalley group G(K) of normal
type G = Φ or of twisted type G = mΦ. At the beginning of 1990th V.M. Levchuk
suggested an approach to Problem (B) based on the solution of Problem (C) of
description of maximal normal abelian subgroups in U . At 2000th G.S. Suleimanova
developed this approach and completed the solution of Problems (B) and (A) in
2013 [5].

Problem (C) was solved by the authors in [3], [4] for an arbitrary field K. The
description of large normal abelian subgroups in finite groups U is a corollary. The
authors also investigated the hypothesis: Is it true that every large normal abelian
subgroup in U is a large abelian subgroup? The following theorem is proved in [4]:

Theorem 1. A subgroup in U over a finite field K is large normal abelian if
and only if it is normal large abelian.
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The description of the set AN(U) brings also a calculation of the orders of large
abelian subgroups in U . The methods of A.I. Mal’cev and their modification in the
works of E.P. Vdovin (1999 – 2001) were used in the proof.

The solution of Problem (C) may by applied to the generalized problem of
A.I. Mal’cev. Every element γ ∈ U is uniquely represented as the product of root
elements xr(γr) (r ∈ Φ+), arranged according to a fixed (arbitrary) order of roots
(the canonical decompositoin). We define the isomorphism π of the group U to "the
adjoint" group ⟨NΦ(K), ◦⟩, putting

π(γ) =
∑
r∈Φ+

γrer (γ ∈ UΦ(K)), α ◦ β = π(π−1(α)π−1(β)) (α, β ∈ NΦ(K)).

For p(Φ) = max{(r, r)/(s, s) | r, s ∈ Π(Φ)} the authors and L.A. Martynova
showed earlier that if p(Φ)!K = K, and for the types Dn and En also 2K = K, then
the sets of normal subgroups of the adjoint group and the set of ideals of the Lie
ring NΦ(K) coincide. We make more precise the exceptions for the types Dn and
En in terms of [4], [6].

Theorem 2. A normal subgroup H of the adjoint group NDn(K) over a field
K is not a Lie ideal if and only if it has three p32-connected corners with projections
of order 2 on these corners and Kep3,−2 ̸⊆ H.

Theorem 3. A normal subgroup H of the adjoint group NEn(K) over a field
K is not a Lie ideal if and only if it has three α4-connected corners from the set
{α2, k1α1 + α3, α5 + k2α6 + k3α7 + k4α8} (for a suitable k1, k2, k3, k4 ∈ {0, 1}) with
projections of order 2 on these corners and Ker+s+α4 ̸⊆ H for every such corners
r, s.

We find the largest dimension of abelian subalgebras in NΦ(K) and investigate
the hypothesis: Is it true that every large abelian ideal of the algebra NΦ(K) is
a large abelian subalgebra? By the established correspondence, the description of
maximal abelian ideals of the Lie ring NΦ(K) follows for p(Φ)!K = K from the
solution of Problem (C). The worked out methods allow to get the description in
the rest cases.
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Definition 1. Let G be a finite group, G = {g1, . . . , gn}, F a finite field, R =
FG the group algebra. An ideal I of the ring R defines a code

C(I) = {(a1, . . . , an) ∈ F n :
n∑
i=1

aigi ∈ I}. (1)

Any code defined by (1) is called a group code.

The study of the group codes began as early as in the middle of the last century.
(cf. for instance [1]). It is clear that in fact the Definition 1 of the group code involves
some enumeration of elements of the group G. In [2] this definition is refined as
follows.

Definition 2 ([2]). Let G be a finite group of order n. Код C of length n over a
field F is called a G-code, if it is permutation equivalent to a code of the form C(I)
for some ideal I in the group algebra FG, i.e. there exists a permutation σ ∈ Sn
such that

C = {(a1, . . . , an) ∈ F n : (aσ(1), . . . , aσ(n)) ∈ C(I)}.

It is clear that Definition 2 does not depend on the enumeration of elements of
the group. Moreover it allows to consider a code as a group code for different groups
simultaneously. In particular, the following definition was suggested.

1Grant of RFBR N 14-01-00452
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Definition 3 ([2]). A code C of length n over a field F is called an abelian group
code if it is an A-code over F for some abelian group A of order n.

Some class if abelian group codes is given by

Theorem 1 ([2]). If G is a finite group and

G = AB = {ab : a ∈ A, b ∈ B}

for some abelian subgroups A,B of the group G then every G-code is abelian.

However, the authors could not present any examples of non-abelian group codes.
It is easy to check that ifG < 24 then the groupG satisfies the conditions of Theorem
1, so it was natural to begin with study of groups of order 24. The first examples of
the non-abelian S4-codes were constructed in [3] with essential computer usage.

Proposition 1 ([3]). The weight distribution of two ideals with dimension 9 in
the group algebra GF(5)S4 differs from the weight distribution of any abelian group
code (the weight distribution of an ideal I is the vector (m0,m1, . . . ,mn), where mi

is the number of elements in I such that their expression contains exactly i non-zero
coefficients). It follows that these ideals define non-abelian group codes.

Later, we again used computation and the weight distribution comparison to
prove

Proposition 2 ([4]). There exists an ideal of dimension 9 in the group algebra
GF(3)S4 that defines a non-abelian group code.

Quite recently we again used a computer to prove

Theorem 2. There exists an ideal of dimension 9 in the group algebra GF(2)S4

that defines a non-abelian group code.

Note that the weight distribution of two ideals with dimension 9 in the group
algebra GF(2)S4 coincides with the weight distribution of some abelian group code
so we had to use the new algorithms to prove 2.

Propositions 1, 2 and Theorem 2 imply

Corollary 1. If p ∈ {2, 3, 5} then for any field F with charF = p there exists
a non-abelian S4-code over F .

The codes in these examples have distances which are far from maximal ones for
the given length and dimension. The next example does not have this drawback.

Theorem 3. If G = SL2(GF(3)) and F = GF(2) then there exists a non-abelian
G-code with dimension 6 and distance 10 over the field F . At the same time:
1. The distance of any abelian group code with the same length and dimension over
F does not exceed 8.

2. The distance of any linear code with the same length and dimension over F does
not exceed 10 [5].
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Note that Theorem 3 is proved without computer, but the next one is proved
using a computer again.

Theorem 4. Let G = SL2(GF(3)) and F be any field with charF = p,where
3 6 p < 100. Then there exists a non-abelian G-code with dimension 4 over the field
F .

Hypothesis. Over any finite field F with charF = p > 2, there exists a non-abelian
G-code with dimension 4 over the field F .
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Definition 1 ([1]). The length of a finite system of generators S for a finite-
dimensional associative algebra A over an arbitrary field is defined as the least
nonnegative integer l(S) such that the words of length not exceeding l(S) span this
algebra (as a vector space). The maximum length for the systems of generators of
an algebra is referred to as the length of the algebra, we denote it by l(A).

1Grants MD-962.2014.1, RFBR No. 13-01-00234a
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It was established by A. Paz in [2] that the length of any commutative subalgebra
in the matrix algebra of order n over the field of complex numbers C is not greater
than n− 1.

It was later proved in [3], [4] that this bound also holds for commutative algebras
over arbitrary fields and the following description of commutative subalgebras of
maximal length was obtained:

Theorem 1. Let F be an arbitrary field and let A be a commutative subalgebra
in the matrix algebra Mn(F). Then
1. l(A) ≤ n− 1;
2. l(A) = n− 1 if and only if the algebra A is generated by a nonderogatory matrix
C, i.e. by such a matrix C ∈Mn(F), that

dimF(⟨C0 = En, C, C
2, . . . , Cn−1⟩) = n.

In the present talk we describe commutative subalgebras of the length n− 2 in
the algebra Mn(F), i.e. of the length closest to maximal, over algebraically closed
fields.

The following theorem shows that this question can be reduced to the case of
nilpotent commutative subalgebras of the length n− 2:

Theorem 2. Let F be an algebraically closed field and let n ∈ N, n ≥ 2. Consider
a commutative subalgebra A in Mn(F) of the length l(A) = n− 2. Then there exist
a number m ∈ N, 2 ≤ m ≤ n, a commutative subalgebra B ⊆ Mm(F) of the length
m − 2 and of the form FE + N , where N is a nilpotent algebra, and if m < n,
a commutative subalgebra C ⊆Mn−m(F) generated by a nonderogatory matrix, such
that the algebra A is conjugated with the algebra B ⊕ C.

Applying the description of nilpotent commutative subalgebras in Mn(F) with
nilpotency indices n and n− 1 (see [5] and [6]), we obtain our main result:

Theorem 3. Let n ≥ 2 and let F be an algebraically closed field. Consider the
matrix A = E1,2 + · · ·+En−2,n−1, where Ei,j denotes the (i, j)-th matrix unit. Let A
be a commutative subalgebra in Mn(F), which contains the identity matrix In. Then
l(A) = n − 2 if and only if the algebra A is conjugated in Mn(F) with one of the
following algebras:

1. FIn, if n = 2;
if n ≥ 3

2. FI2⊕Cn−2, where Cn−2 ∈Mn−2(F) is a subalgebra generated by a nonderogatory
matrix;

3. A0;n = ⟨In, A,A2, . . . , An−2⟩;
4. A1;n = ⟨E1,n, C| C ∈ A0;n⟩;
5. A2;n = ⟨En,n−1, C| C ∈ A0;n⟩;
6. if n = 4, A3;4(1) = ⟨E1,n + En,n−1, C| C ∈ A0;n⟩;
7. if n = 4, charF = 2, A4;4 = ⟨E4, E1,2 + E3,4, E1,3 + E2,4, E1,4⟩;
8. Aj;m ⊕ Cn−m, where j = 0, 1, 2, 3 ≤ m < n, Cn−m ∈ Mn−m(F) is a subalgebra
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generated by a nonderogatory matrix.
Algebras of types 3–7 are pairwise non-conjugate.
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We compare various types of representation of positive integers: DBNS, chain,
and polyadic representation.
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Consider a Dirchlet series:

f(s) =
∞∑
n=1

h(n)

ns
, s = σ + it, (1)

where h(n) is a non-zero finite-valued multiplicative function from naturals with
sum function satisfying a condition:

S(x) =
∑
n6x

h(n) = αx+O(1).

For such Dirichlet series the following statement has been proved.

Theorem 1. Dirichlet series (1) defines a function holomorphic in almost all
points of σ > 0 semiplane, possibly excluding s = 1, where it can have a pole of
order 1. It also does not have pole-like points on the left boundary (σ = 0).

Here we call a point s = σ + it pole-like if |f(σ + it)| tends to infinity when σ
vanishes.
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ALMOST PERIODICAL FUNCTIONS AND DENSITY
THEOREMS FOR DIRICHLET SERIES WITH PERIODIC

COEFFICIENTS
O. A. Matveeva (Saratov)
olga.matveeva.0@gmail.com

In this report the following statement is proved:

Теорема 1. Let Nϵ(T ) be a number of zeros of a Dirichlet series with non-zero
periodic coefficients inside 1

2
− ϵ < σ < 1

2
+ ϵ, 0 < t 6 T rectangle. For arbitrary

ϵ > 0 the following asymptotic formula is valid:

Nϵ(T ) ∼ 1

2π
T lnT.

The basis of its proof is a statement that for Dirichlet series

f(s) =
∞∑
n=1

an
ns
, s = σ + it

with periodic coefficients, whose sum functions are bounded, there exists a sequence
of Dirichlet polynomials Qn(s) which approximates f(s) and its derivatives in any
rectangle 0 6 σ0 < σ 6 1, 0 < t 6 T with exponential speed.

Also several known results on zeros of almost periodical functions of a finite class
[1] are used. Examples of such functions are Dirichlet polynomials Qn(s).
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Only finite groups are considered. LetG be a group. Denote by ω(G) the spectrum
of G, i.e. the set of all element orders of G. Groups with identical spectrum is said
to be isospectral. Since ω(G) is closed by the divisibility condition, it is uniquely
determined by the subset µ(G) consisting of maximal elements of spectrum under
this condition.

2-Frobenius group is a group G which contains a normal Frobenius subgroup B
with Frobenius kernel A such that G/A is a Frobenius group with Frobenius kernel
B/A. The prime graph or Gruenberg-Kegel graph GK(G) of a group G is undirected
graph whose vertices are prime divisors of order of G and edges are pairs of non-equal
prime divisors p and q, such that G contains an element of order pq.

It is proved in [1] that every soluble group G with non-connected graph GK(G)
is a Frobenius or 2-Frobenius group. M.R Aleeva (Zinov’eva) [2] shoved that the
list of simple groups which are isospectral with Frobenius groups (respectively,
with 2-Frobenius groups) is exhausted by L3(3) and U3(3) (respectively, by U3(3) и
S4(3)), but the question about existence of such 2-Frobenius groups remained open
until recently. It was proved in [3] that a simple non-abelian group isospectral with
soluble one is isomorphic to one of groups L3(3), U3(3), S4(3) or A10. A.M. Staroletov
[4] described groups which are isospectral with A10. They all are insoluble. A.V.
Zavarnitsine [5] build an example of 2-Frobenius group of order 5 648 590 729 620
= 22 · 324 · 5 which is isospectral with S4(3).

We consider the remaining case.

Theorem 1. There exists a 2-Frobenius group isospectral with the simple group
U3(3).

Our example is a semidirect product of a group P of order 218 with a Frobenius
group of order 21.

The group P is generated by elements x1, x2, x3, y1, y2, y3 with the following
defining relations:
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x4i = y4i = 1, i ∈ {1, 2, 3}; (1)

[xi, xj] = [yi, yj] = 1, i, j ∈ {1, 2, 3}; (2)

[xi, yi] = 1, i ∈ {1, 2, 3}; (3)

[xi, yj] ∗ [xj, yi] = 1, 1 6 i < j 6 3; (4)

[[xi, yj], xk] = [[xi, yj], yk] = 1, i, j, k ∈ {1, 2, 3}. (5)

These relations imply

Lemma 1. 1. The nilpotency class of P is equal to 2 and P is a 2-group.
2. Subgroups X = ⟨x1, x2, x3⟩ and Y = ⟨y1, y2, y3⟩ are isomorphic to the direct

product of three cyclic groups of order 4, and P = ⟨X, Y ⟩.
3. The derived subgroup Z of P is generated by elements z1 = [x1, y2], z2 =

[x1, y3], z3 = [x2, y3] whose orders are equal to 4. It is isomorphic to the direct product
of three cyclic subgroups of order 4.

4. The order of P is equal to 218.
5. The exponent of P is equal to 8.

Let rx and ry be automorphisms of X and Y , respectively, whose matrices in
their basises x1, x2, x3 and y1, y2, y3 are equal to0 1 0

0 0 1
1 −1 2

 .
These automorphisms are uniquely extendable to an order 7 automorphism r of P .
The matrix of restriction of r on Z in the basis z1, z2, z3 is equal to 0 0 1

−1 0 2
0 −1 1

 .
The automorphism r acts on P fixed-point-freely.

Let, further, sx and sy be automorphisms of groups X and Y , respectively, whose
matrices in their basises x1, x2, x3 and y1, y2, y3 are equal to1 0 0

0 0 1
2 −1 −1

 .
These automorphisms are uniquely extendable to an order 3 automorphism s of P .
The matrix of restriction of s on Z in the basis z1, z2, z3 is equal to 0 1 0

−1 −1 0
0 2 1

 .
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The fixed points subgroup of s in X is equal to ⟨x1⟩, the fixed points subgroup of s
in Y is equal to ⟨y1⟩, the fixed points subgroup of s in Z is equal to ⟨z21z22z3⟩. This
implies that the subgroup C of fixed points of s in P is generated by x1, y1, z21z22z3.
By (3) and Lemma 1, C is abelian of exponent 4.

Besides, s−1rs = r2, i.e F = ⟨r, s⟩ is a Frobenius group of order 21.

The natural semidirect product P with F is a required group.

The work is supported by Russian Foundation of Basic Research (Grant no. 14-
01-90013), and also be the Program of Siberian Branch of RAS on years 2012-2014
(Grant no. 14).
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The concept of artinian plays an important role in the theory of rings.
Associative ring R is called right (left) artinian if every descending chain of its

right (left) ideals of ideals stabilizes [1], [2].
Examples of the right artinian rings are known, but left artinian rings are not.

[1].
Further, saying artinian algebra or artinian ring we will have in mind right

artinian.
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The concept of artinian is used as one of the conditions of finiteness (finite
dimensionality).

Artinian for Lie algebras through the ideals defined Y.A. Bahturin [3], S.A.
Pikhtilkov [4] and V.M. Polyakov[5]. They considered special i-artinian Lie algebras.

In 1963, V.N. Latyshev has introduced a new class of Lie algebras [6], which he
called special by analogy with Jordan algebras.

Lie algebra L is called a special Lie algebra if there is an associative PI-algebra
A such that L is embedded in A(−) as a Lie algebra, where A(−) is Lie algebra defined
on A by the operation [x, y] = xy − yx.

Perhaps the best analogs of the one-sided ideal for Lie algebras are subalgebras
or inner ideals.

The notion of inner ideal for Jordan algebras was introduced by Jacobson [7]. G.
Benkart introduced inner ideal for Lie algebras by analogy[8].

Subspace of B of the Lie algebra L is an inner ideal if the inclusion [B, [B,L]] ⊂
B.

F. Lopez, E. Garcia, G. Lozano explored the concept of the inner ideal with
respect to artinian via Jordan pairs [9], [10].

Consider the definition artinian in three senses.
Let L is Lie algebra.
a) If the descending chain of ideals stabilizes, then the algebra is called i-artinian;
b) if decreasing chain algebras stabilized, then the algebra is called a-artinian;
c) if the descending chain of inner ideals stabilizes, then the algebra called inn-

artinian.
In the paper [11] is an example of an infinite-dimensional inn-artinian Lie algebra.
We determined that of the inn-artinian may not follow the a-artinian.
It is easy to check that from inn-artinian follows i-artinian and from the a-

artinian follows the i-artinian.
In the paper [11] also examples showing that of i-artinian can not follow a-

artinian and inn-artinian.
Are interesting examples of infinite a-artinian algebras.
The next question arises.
Question 1. Are there infinite-dimensional a-artinian Lie algebras?
The answer to this question is unknown to the author.
O.Y. Schmidt formulated the problem on the existence of an infinite non-abelian

groups all, subgroups of which are finite. This problem was solved, A.Y. Olshansky
[12]. The example of [12] built by using geometric methods in group theory. Its
postponement on Lie algebras are still unable to perform.

The main result of the paper is the consideration of question 1 to the next
question.

Question 2. Are there primary infinite a-artinian Lie algebra?

Theorem 1. Questions 1 and 2 for the Lie algebras are equivalent.
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Concepts a-artinian and inn-artinian are useful. For example, the following
theorem gives a solution to the problem of A.V. Mikhaleva on the solubility of
the primary radical Artinian Lie algebra.

Theorem 2. ([13]). Let L be a-artinian or inn-artinian algebra. Then prime
radical P (L) Lie algebra L is solvable.
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We call by the Lie algebroid a finite dimensional vector bundle E → M over a
smooth manifold M with a homomorphism a : E → TM to the tangent bundle TM ,
called anchor, and the space Γ∞(E) of smooth sections is provided with an additional
structure, the commutator bracket {•, •}, which satisfies the natural properties of
the structure infinite-dimensional Lie algebra, as well as the Newton-Leibniz identity
with respect to the operation of multiplication of section by a smooth function. The
anchor thus induces a homomorphism of the Lie algebra Γ∞(E) into the Lie algebra
Γ∞(TM) of vector fields on the manifold M .

Examples of Lie algebroids are the tangent bundle TM , the bundle D(L) of
covariant differentiations of all smooth sections Γ∞(L) of any finite-dimensional
vector bundle L over a smooth manifold M , as well as the tangent bundle of an
arbitrary smooth foliation F on the manifold M without singular points. In the
case where a anchor is surjective, the Lie algebroid is called transitive.

Transitive Lie algebroids were detaily studied in the book by K.Mackenzie ([1])
. In particular, it was shown that the smooth map of manifolds generate the inverse
image (pullback) of transitive Lie algebroids, which depends only on the homotopy
class of the map. From this observation it follows that the classification of transitive
Lie algebroids can be reduced to the construction of the final objects for each fixed
finite-dimensional Lie algebra g, associated to the transitive Lie algebroid and the
classification is invariant up to homotopy. In spite of the evidence of the observation
the construction of the final object still was not conducted.

We prove ([2], [3]), that the homotopy classification is reduced to the construction
of the final space in the form of the classifying space BG, where G is the group
Aut(g) of automorphisms of the adjoint Lie algebra g with topology thinner than the
classical topology. This construction, in particular, allows to calculate the cohomolo-
gy Mackenzie obstacle for existence of a transitive Lie algebroid, which turns trivial
in many cases. For example, Mackenzie obstacle is trivial for any simply connected
manifold.

This work was done jointly with Li Xiaoyu (China) and Gasimov V.A-M. (Azer-
baijan).

1Grant RFBR No. 14-01-00007
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NUMERICAL CHARACTERISTICS OF VARIETIES OF
LINEAR ALGEBRAS

S. P. Mishchenko (Ulyanovsk)

The report will present the results from the beginning of the new millennium,
associated with unusual behavior of the numerical characteristics of the varieties. It
will focus on the main numerical characteristic of variety: its growth. Characteristic
of the main field is equal to zero. All backgrounds was stated in [1].

When we talk about own variety V of associative algebras, it is well known
that sequence of codimensions cn(V), n = 1, 2, . . . , behaves asymptotically as either
polynomial or exponential function like an, n = 1, 2, dots, where a is a non-negative
integer. In class of Lie algebras the situation is various. The growth of codimension
can be over-exponential, and in the case of exponential growth of an, n = 1, 2, . . . ,
number a may be non-integer. This effect exist even for classical objects.

For example, as shown in paper [2], for the variety generated by the Lie algebra
of vector fields on the plane, asymptotically, i.e. starting with some n, the following
inequality holds (13, 1)n 6 cn(V) 6 (13, 5)n.

In general, there are more unusual examples of behavior numerical characteris-
tics. We consider the situation when variety consists of left-nilpotent algebras order
two. Hence, the identity takes place

x(yz) ≡ 0. (1)

Denote by 2N the variety of all such algebras. From identity (1) follows that in
all non-zero products parentheses can be placed only left-normed way, that is so:
(((x1x2)x3) . . . xn).

Let V be a variety of algebras with identity (1) and F (V) denotes relatively
free algebra of countable rank, generated by free variables x1, x2, . . . . Let Pn(V)
be vector space of multilinear elements on the variables x1, . . . , xn in F (V), and let
cn(V) = dimPn(V) be its dimension. The growth of sequence cn(V), n = 1, 2, . . . ,
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determines the growth of variety. If inequality cn(V) < an holds for any n and
appropriate number a, then there exist the lower and upper limits called the lower
and upper exponents of the variety V.

EXP(V) = limn→∞
n
√
cn(A), EXP(V) = limn→∞

n
√
cn(A),

If the limit exists, i.e. EXP(V) = EXP(V), then it called the exponent of V and
denoted by EXP(V).

In paper [3] was constructed examples of varieties with any exponents and in
article [4] was constructed series of varieties, so-called intermediate growth. Recall
that variety V have intermediate growth if for any k > 0, a > 1 exists such constant
C1, C2, that for any n takes place inequality

C1n
k < cn(V) < C2a

n.

Note that in any class of associative algebras or class of Lie algebras such varieties
doesn’t exist.

Theorem 1. (Giambruno A., Zaicev M. V., Mishchenko S. P.). For any real
α, α > 1, exists such variety Vα ⊂ 2N, that EXP(Vα) = α.

Theorem 2. (Giambruno A., Zaicev M. V., Mishchenko S. P.). For any real
number β, 0 < β < 1, exists such variety Vβ ⊂ 2N, that

lim
n→∞

logn logn cn(Vβ) = β,

i.e. sequence cn(Vβ) behaves as nnβ
, n = 1, 2, . . . .

Will be called a variety of almost nilpotent if it is not itself is nilpotent, but
every own subvariety is nilpotent. For example, the variety of all commutative
associative algebras and the variety of all metabelian Lie algebras is almost nilpotent.
The growth of these varieties is small. More precisely, in the first case for any n
codimension is equal to 1 and in the case of a metabelian variety of Lie algebras
codimension is n− 1. In the class of algebras satisfying (1) the situation is different.
Two years ago, an example of almost nilpotent variety with a significant growth of
sequence of codimension with exponent is equal to two was found. A year later it
was proved that there is almost nilpotent varieties with any integer exponent (see
[5], [6]).

Theorem 3. (Valenti A., Mishchenko S.P., Shulezhko A.V.). For any integer
m, m > 2, exists almost nilpotent variety Vm ⊂ 2N with exponent is equal to m,
that is EXP(Vm) = m.

In the last year (see [7]) was constructed an example of variety with various
upper and lower exponents.
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Theorem 4. (Zaicev M.V.). For any real α > 1 there exists such variety Vα ⊂
2N that

1 = EXP(Vα) ̸= EXP(V) = α.

Unusual examples was found among the varieties of polynomial growth. Recall
that in the case of associative algebras, Lie or Jordan algebras the sequence of
codimension of variety with polynomial growth asymptotically behaves as Cnk,
where k is integer. In the paper [8] first was built examples of variety with fractional
polynomial growth.

Theorem 5. (Zaicev M.V., Mishchenko S.P.). Over field of zero characteristic
for any real 3 < α < 4 there exists variety of linear algebras Vα ⊂ 2N, that for
sufficiently large n the following condition holds

C1n
α < cn(Vα) < C2n

α,

where C1, C2 is some positive constants.
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LEIBNIZ ALGEBRAS VARIETY Ṽ1

S. P. Mishchenko, Y. R. Pestova (Ulyanovsk)

The characteristic of the basic field is equal to zero and all the undefined notions
can be found, for example, in the monograph [1]. Let’s remind that Leibniz algebra is
determined by the identity (xy)z ≡ (xz)y + x(yz). This means that the operator of
right multiplication is derivation of the algebra, that allows us to do conversions
in products. For example, any product of elements we can express as a linear
combination of left-normed products. We shall agree to omit brackets in these
products, i.e. abc = (ab)c. In this work the variety Ṽ1 of all Leibniz algebras is
discussed, in which the next identity takes place

x1(x2x3)(x4x5) ≡ 0.

Leibniz algebras variety Ṽ1 was investigated rather extensively in the paper [2].
Almost polynomial growth of the variety is proved and also the construction of
space of multilinear elements of relatively free algebra variety as the module of the
symmetric group is described. In particular, formulas for finding of codimensions,
multiplicities and colength are found. So, the codimension is expressed on the
formula cn(Ṽ1) = 2n−2n(n− 3) + 2n, and for colength when n > 2 we have:

ln(Ṽ1) =

{
n2 − 7

2
n+ 6, if n = 2k even,

n2 − 7
2
n+ 11

2
, if n = 2k + 1 odd.

Recently the authors have received a new result.

Theorem 1. . The bases of multilinear part of variety Ṽ1 consists of the elements
of the form: xi1xi2 . . . xin , where i2 > · · · > in; (xi1xi2 . . . xin−k

)(xj1xj2 . . . xjk), where
k = 2, . . . , (n− 1), i2 > · · · > in−k, j1 < j2 и j2 > j3 > · · · > jk.
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ALMOST NILPOTENT VARIETIES OF ANY INTEGER
EXPONENT

S. P. Mishchenko, O. V. Shulezhko (Ulyanovsk)
The basic field has the zero characteristic. All undefined notions can be found

in book [1]. We will say that a variety is almost nilpotent if it is non-nilpotent,
but every its own subvariety is nilpotent. For example, variety of all associative
and commutative algebras and variety of all metabelian algebras Lie are almost
nilpotent. Recently the complete description of all almost nilpotent varieties was
received in a class of Leibniz algebras [2]. In all these cases the growth of almost
nilpotent variety was polynomial.

The main idea of this work is to prove the existence of almost nilpotent varieties,
growth of sequence of codimensions of which is exponential. Ideologically we based
on article [3] in which the almost nilpotent variety of exponent 2 is constructed and
using Zorn’s lemma they proved the next theorem

Theorem 1. Let U — any non-nilpotent variety of algebras. Then there is such
subvariety V of variety U that variety V is almost nilpotent.

We agree to omit brackets in case of their left-notmed arrangement, i.e. abc =
(ab)c. Moreover, we denote Ra as the operator of multiplication on the right on an
element a and write down the result of action of the operator Ra on an element b
as bRa, i.e. bRa = ba. The last designation is convenient. For example, left-normed
product ba . . . a of degree k + 1 can be written in a short form bRk

a.
For any natural m > 2 we define not associative algebra Am, which is generated

by generators {z, a1, a2, . . . , am} and with the following relations:

aiaj = aiz = 0, 1 6 i, j 6 m;

(zw(Ra1 , . . . , Ram))(zw′(Ra1 , . . . , Ram)) = 0,

for some, probably empty, associative words w and w′ from operators Rai ;

z(Ra1 . . . Ram)kai1 . . . aisais+1 . . . ait + z(Ra1 . . . Ram)kai1 . . . ais+1ais . . . ait = 0

for all k > 0 and 1 6 s < t 6 m, 1 6 i1, . . . , it 6 m.
The variety generated by algebra Am, we denote Um. The main result of the

work is the next theorem.

Theorem 2. Let V be non-nilpotent subvariety of the variety Um. Then exponent
of the variety V is equal to m.

From this result and the theorem 1 follows that for any natural m, m > 2, there
is an almost nilpotent variety of exponent m.

Note that in the work [3] was proved also that the variety U2 is almost nilpotent.
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TWO-DIMENSIONAL CONTOU-CARRÈRE SYMBOL
AND RECIPROCITY LAWS AN ALGEBRAIC

SURFACES1

D. V. Osipov (Moscow)
d−osipov@mi.ras.ru

Let X be a smooth algebraic surface over a perfect field k. By any point x ∈ X
and any irreducible curve C ⊂ X such that x ∈ C, one canonically constructs an
Artinian ring Kx,C which is a finite product of two-dimensional local fields. If x is a
smooth point on a curve C, then the ring Kx,C is isomorphic to the two-dimensional
local field k(x)((u))((t).

Let ω ∈ Ω2
k(X)/k. For any pair x ∈ C as above, the two-dimensional Parshin

residue resx,C : Ω2
k(X)/k → k(x) is defined. The Parshin resiprocity laws are satisfied,

[1]:

1. Fix a point x ∈ X. Then the following sum contains only finitely many terms
distinct from 0 and ∑

C∋x

Trk(x)/k ◦ resx,C(ω) = 0.

2. Fix an irreducible curve C ⊂ X. Then the following sum contains only finitely
many terms distinct from 0 and∑

x∈C

Trk(x)/k ◦ resx,C(ω) = 0.

1partially supported by RFBR grants no. 14-01-00178-a and no. 13-01-12420 ofi_m2, by grant
NSh-2998.2014.1
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Analogous, multiplicative reciprocity laws are satisfied for two-dimensional tame
symbols (in composition with norm maps) applied for any pair x ∈ C to fixed three
elements from the group k(X)∗. Here the two-dimensional tame symbol is a map
from the group KM

3 (k(x)((u))((t))) to the group k(x)∗. This map is a composition
of boundary maps in Milnor K-theory.

A two-dimensional Contou-Carrère symbol was defined in [2] for any commuta-
tive ring R as some map (which is functorial with respect to R):

(·, ·, ·) : R((u))((t))∗ ×R((u))((t))∗ ×R((u))((t))∗ −→ R∗.

If the ring R is a field, then the two-dimensional Contou-Carrère symbol coincides
with the two-dimensional tame symbol. If R = L[ϵ]/ϵ4, where L is a field, then for
any elements f, g, h from L((u))((t)) we have:

(1 + ϵf, 1 + ϵg, 1 + ϵg) = 1 + ϵ3 res(fdg ∧ dh),

where res is the Parshin residue, which is a map from the space Ω2
L((u))((t))/L to the

field L.
The following reciprocity laws for the two-dimensional Contou-Carrère symbol

were proved in [2].

Theorem 1. Let R be a local finite k-algebra. Let elements f, g, h be from the
group (k(X)⊗k R)∗.

1. Fix a point x ∈ X. Then the following product contains only finitely many
terms distinct from 1 and∏

C∋x

Nmk(x)/k(f, g, h)x,C = 1.

2. Fix an irreducible curve C ⊂ X. Then the following product contains only
finitely many terms distinct from 1 and∏

x∈C

Nmk(x)/k(f, g, h)x,C = 1.

Here (·, ·, ·)x,C is the two-dimensional Contou-Carrère symbol which is well-
defined on the group ((Kx,C ⊗k R)∗)3, since the ring Kx,C ⊗k R is a finite product
of rings isomorphic to (k′ ⊗k R)((u))((t)) (for various k′ ⊃ k).

This theorem is proved by means of (another) definition the two-dimensional
Contou-Carrère symbol as generalized commutator in some categorical central exten-
sion of the group R((u))((t))∗. Such categorical central extensions and commutators
in these central extensions were studied in [3].

We note that if the ground field k is a finite field, then for various n we can
consider local k-algebras R = k[s]/sn. Using these algebras R, from the two-dimensi-
onal Contou-Carrère symbol we derive multidimensional analogues of Witt symbols,
which were used by A. N. Parshin and K. Kato for the construction of the two-
dimensional class field theory, see [2].
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MATHEMATICAL MODEL OF INFORMATION
SECURITY SYSTEMS BASED ON DIOPHANTINE SETS

V. O. Osipyan, A. V. Mirzayan (Krasnodar), A. Y. Karpenko
(Maikop), A. C. Zhuk, A. X. Harutyunyan (Krasnodar)

v.osippyan@gmail.com rrwo@mail.ru

In this paper, we propose a mathematical model of polyalphabetic cryptosystem in
which the inverse transform algorithm of the text is an algorithmically unsolvable
problem for analyst. It permeates the idea of Shannon who believed that the greatest
variability in the selection of keys is in cryptosystems containing Diophantine prob-
lems.

Based on the theoretical positions [1, 2, 3] for constructing persistent and effective
models of information security systems (ISS), we note particularly, that all mathema-
tical problems are models of concealment and protection information and solution of
these problems corresponds to the correct key. Consequently, the choice of suitable
problems, in particular NP-complete problem, helps to create the information securi-
ty system at the appropriate level. Especially this problem, as noted Shannon
[1], is associated with a task that contains Diophantine STI. Note that all non-
standard knapsack problems KG (generalized task), KU (super-generalized task),
KF (functional task) first introduced by the author [4], belong to the class of NP-
complete problems.

In this paper, on basis of the multistage systems of Diophantine equations [4, 5,
6],

x1, x2, . . . , xm
n
= y1, y2, . . . , ym (1)

we propose mathematical model polyalphabetic cryptosystems, inverse transform
algorithm (decryption ) closed text which is to algorithmically unsolvable problem
for policy analysis.



Algebra and number theory: modern problems and applications 131

Let us associate with each numerical solution of (1)

a1, a2, . . . , am
n
= b1, b2, . . . , bm

two knapsack vectors A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bm), describing them
as well - strong backpacks [4] of dimension m degree n. This ratio is recorded as
followed:

A
n
= B or (a1, a2, . . . , am)

n
= (b1, b2, . . . , bm).

and it has the following properties of equivalence.
For example, the following normal [4] two-parameter knapsack dimension m = 5,

n = 4 degree 4.

(19a+b,15a+5b,11a+9b,3a+17b,2a+18b)
4
=(a+19b,5a+15b,9a+11b,17a+3b,18a+2b)

are equivalent.
In particular, when a = 1, b = 2, then the followings are equivalent to the normal

power numeric backpacks n = 4:

(21, 25, 29, 37, 38)
4
= (39, 35, 31, 23, 22).

We consider Diophantine representation of the family of multistage systems

x1, x2, . . . , xm
n
= p1, p2, . . . , pm (2)

and define the set W (Diophantine set) [7]

W = {p1, p2, . . . , pm|x1, x2, . . . , xm
n
= p1, p2, . . . , pm}

— non-negative integer values of ordered sets p1, . . . , pm, for which the equation (2)
is solvable with respect to unknown x1, . . . , xm.

The paper presents the Diophantine representation of multistage systems of
Diophantine equations for different parameters m and n, and form most common
parametric solutions are given in the form of a system of linear equations . To
build effective information security systems based on Diophantine representation
of multistage systems of Diophantine equations , we can apply the following main
theorem [3].

Theorem 1. Suppose there are two pairs of equivalent numeric knapsacks, the
first of which is an arbitrary parametric analytical solution multistage system of
Diophantine equations of n-th degree

x1, x2, . . . , xm
n
= y1, y2, . . . , ym

and the second is any extension of the first :

(a1, a2, . . . , am)
n
= (b1, b2, . . . , bm), (или A

n
= B), 1 ≤ n < m;

(c1, c2, . . . , ck)
n+t
= (d1, d2, . . . , dk), (или C

n+t
= D), t ≥ 1, 1 ≤ n+ t < k.

Then the problem of equivalent numeric backpacks (A, v) (or (B, v)) is solvable,
and its solution coincides with the decision to enter (C, v) (or (D, v)).
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Mathematical model to describe the alphabet cryptosystem used tuple different
from the previously considered [8, 9, 10, 11]∑

0 = ⟨M∗, E(m), D(s), S∗|V (E(m), D(s))⟩ (3)

where M∗ – the set of all messages m = m1,m2, . . . ,mk (open texts) over the
alphabetic or numeric alphabet M ; here mi, i = 1 . . . k, – elementary messages
(in particular, letters or characters concatenation alphabet of M); S∗ – the set
of all ciphertext (cryptograms) s = s1, s2, . . . , sk of cryptosystem (3); E(m) – the
algorithm of the direct transformation (encryption) of the message m to s; D(s) –
inverse algorithm of transition (decrypt) the ciphertext (cryptogram) s to m ∈M∗.

We emphasize that the algorithm E and D alphabetic cryptosystem (3) are
interconnected in such a way – V (E,D), that any arbitrary message m = m1,m2, . . .
. . . ,mk ∈M∗ can be uniquely transformed in corresponding cryptogram s=s1, s2 . . .
. . . sk ∈ S∗ and vice versa.

For example, the model knapsack cryptosystem based on constructive knapsack
is represented as: ∑

D1 = ⟨M∗, KE(A, n), KD(B, n), S∗|A 5
= B⟩.

We present alphabetical model of knapsack cryptosystem, main idea of which is
that a legitimate user of the system due only one cipher determines Diophantine
representation of the family of multistage system Diophantine equations. The diffi-
culty for the non-legal user is to find the solution of multistage system Diophantine
equations (1). This problem is easily solved legitimate user, because he knows how
to find the solutions parametric Diophantine equations for higher degrees.

REFERENCES

[1] Shannon C. Communication theory of secrecy systems // Bell System Techn.
J. 28, № 4. P. 656–715.

[2] Alferov A. P., Zubov A., Kuz’min A. S., Cheremushkin A. V. Basics of
cryptography: a manual for students of the UNIVERSITY. M.: Gelios ARV,
2002. 480 p.

[3] Osipyan V. O., Arutjunjan A. S., Spirina S. G. Modelirovanie rancevyh
kriptosistem, soderzhashhih diofantovy trudnost’ // Chebyshevskij sbornik.
2010. Vol. XI, № 1. P. 209–217.

[4] Osipyan V. O. Modelirovanie sistem zashhity informacii soderzhashhih
diofantovy trudnosti. Razrabotka metodov reshenij mnogostepennyh sistem
diofantovyh uravnenij. Razrabotka nestandartnyh rjukzachnyh kriptosistem:
monograph, LAP, 2012. 344 p.



Algebra and number theory: modern problems and applications 133

[5] Gloden A. Mehrgradide Gleichungen. Groningen, 1944.

[6] Dickson L. E. History of the Theory of Numbers. Vol. 2. Diophantine Analysis.
N.Y. 1971.

[7] Matiyasevich Yu. V. Diophantine sets // Uspekhi Mat. of Sciences. 1972. Vol.
22, №5. P. 185–222.

[8] Osipyan V. O. Buiding of alphabetic data protection cryptosystems on the base
of equal power knapsacks with Diophantine problems // ACM, 2012, P. 124–
129.

[9] Osipyan V. O., Cryptography in exercises and tasks. M.: Gelios ARV, 2004.
144 p.

[10] Osipyan V. O. Different models of information protection system, based on the
functional knapsack // ACM, 2011. P. 215–218.

[11] [11] Osipyan V. O., Karpenko Y. A., Zhuk A. S., Harutyunyan A. H.
Diophantine difficulties attacks on non-standard cantilever system of infor-
mation protection // Proceedings of the SFU. Technical Sciences. 2013. №12.
P. 209–215.

Kuban State University
Adyghe State University

UDC 511.512
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Asymptotic formulas with remainder terms for the weighted number of integral
points on s-dimensional quadratic surfaces were obtained in [1,2]; a diagonal case
was considered in the first of them, but (and) the general case of four-dimensional
quadratic surfaces the result of [2] has the form

I(n) = π2nW (n)H(p) +O
(
∥A∥ |δF |3n

3
4
+ε
)
,

where
I(n) =

∑
p(x)=0

e−
ω(x)
n
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is the weighted number of integral points on the four-dimensional surface of second
order

p(x) = Q1 (x1, x2)−Q2 (x3, x4)− h = 0,

ω(x) = λ (Q1 (x1, x2) +Q2 (x3, x4)) , λ > 1.

W (n) is complex integral which in our case has the form

W (n) =
1

2πi

∫ 1+i∞

1−i∞

e
h
n
·z

λ2 − z2
dz, λ > 1;

H(p(x)) =
∞∑
q=1

q−4

q∑
l=1

(l,q)=1

S(lp(x), q)e−2πi lh
q

is the singular series of Hardy-Littlewood, where

S(p(x), q) =

q∑
x1,...,x4=1

e2πi
p(x1,...,x4)

q is Gaussian sum,

∥A∥ is norm of a matrix A = (aij), defined by the equality

∥A∥ = max
16i64

4∑
j=1

|aij| ,

δF is the discriminant of imaginary quadratic field F = Q
(√

d
)
, d is free from quad

rates corresponding to binary quadratic forms Q1 (x1, x2) and Q2 (x3, x4).
Estimations form W (n) and H(p(x)) were given in [1, 2] as well. In our case

of four-dimensional quadratic surface not being cone it succeeds in finding wore
precise estimation over for H(p(x)) if use the following statement about the sum of
Ramanujan

cq(h) =

q−1∑
l=1

(l,q)=1

e−2πi lh
q .

Lemma 1. For the sum of Ramanujan the following inequality

cq(h) 6 НОД (q, h).

is valid.

Using this lemma from [3, theorems 1-3] we receive the following result.
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Theorem 1. For singular series H(p(x)), where

p(x) = Q1 (x2, x2)−Q2 (x3, x4)− h

and det (Q1) = det (Q2) = −δF following upper estimates are valid 0 < H(p(x)) ≪
|δF |nε for h≪ nε and 0 < H(p(x))≪ |δF |h for h = O(1).

This theorem makes more precise corresponding estimations from [1,2] in four-
dimensional case which in our designations have the form 0 < H(p(x)) ≪ |δF |2nε,
where ε is arbitrarily small positive number.

REFERENCES

[1] Malyshev A. V. On weighted number of integral points lying on the surface of
second order // Zapiski Nauchnykh Seminarov LOMI. 1966. Vol. 1. P. 6–83.

[2] Golovizin V. V. On distribution of integral points on hyperbolic surfaces of
second order // Zapiski Nauchnykh Seminarov LOMI. Vol. 106. P. 52–69.

[3] Pachev U. M., Dohov R. A. On double sums of Gauss corresponding to classes
of ideals of imaginary quadratic field // Scientific Registers (Vedomosti) Belsu.
Series Mathematics. Physics. 2013. no. 19, pub. 32. P. 43–54.

Kabardino-Balkar State University

UDC 512.5

CONTINUED AND NOT-CONTINUED PARTIAL
SEMIGROUPS

A. O. Petrikov (Moscow)
masterpetr@mail.ru

Partial semigroup is a set with a partial associative operation. Full operation is
an operation whose values are defined for all sets of elements, partial is an operation
whose values are determined, maybe not for all sets. An interesting question is the
possibility of continue the partial operation to complete with the preservation of
certain properties (eg associativity ) VV Rosen [1] gave a definition of associative
partial operation with two nonequivalent ways. Weak associativity means that for
the elements a, b, c the equality (ab)c = a(bc) is right, if both products (ab)c, a(bc)
are exist. Strong associativity means that for any elements a, b, c either the equality
(ab)c = a(bc), or both products (ab)c и a(bc) does not exist. Obviously, we can
continue the operation, adding to the set of elements and all not defined products
equate to this one (see ES Lyapin and AE Evseev [2]). Author compiled computer
program that checks whether to continue the operation of partial semigroup defined
on n-element set. With the help of the program found that when n 6 4 any partial
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semigroup can be extended to the full without adding a new element . Obviously, if
a partial semigroup S has a passive element (ie an element z, that z · a and a · z is
not defined in any a ∈ S),than the operation can be extended to full without adding
item.

Theorem 1. Partial semigroup of nonzero elements of a completely 0 - simple
semigroup can be continued.

Example 1. Consider a partial semigroup S of all nonempty partial transforma-
tions of two-element set:

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 5 5 5 − −
1 2 3 4 5 6 7 8
3 3 3 6 6 6 − −
1 4 7 2 5 8 3 6
1 5 − 1 5 − 1 5
3 6 − 3 6 − 3 6
7 7 7 8 8 8 − −
7 8 − 7 8 − 7 8

Which can be extended in a following way:

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 5 5 5 1 5
1 2 3 4 5 6 7 8
3 3 3 6 6 6 3 6
1 4 7 2 5 8 3 6
1 5 1 1 5 5 1 5
3 6 3 3 6 6 3 6
7 7 7 8 8 8 7 8
7 8 7 7 8 8 7 8

Example 2 Consider the subsemigroup of the partial semigroup S of all nonem-
pty partial transformations of three - element set spanned by the elements:

1 =

(
1 2 3
1 1 3

)
, 2 =

(
1 2
1 1

)
, 3 =

(
1 2
1 2

)
, 4 =

(
1 2 3
2 2 3

)
, 5 =

(
1 2
2 2

)
,

6 =

(
1 2
3 3

)
, 7 =

(
3
1

)
, 8 =

(
3
2

)
, 9 =

(
3
3

)
.

The Keli matrix of this semigroup has this form:
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3 4 8 23 24 44 61 62 63

3
4
8
23
24
44
61
62
63

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 4 4 23 24 44 61 62 63
4 4 4 24 24 44 − − −
4 4 8 24 24 44 − − −
3 4 24 23 24 44 61 62 63
4 4 24 24 24 44 − − −
44 − − 44 − − 4 24 44
61 61 61 62 62 63 − − −
61 61 62 62 62 63 − − −
63 − − 63 − − 61 62 63

This semigroup can not be extended.
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We will denote prime radical of associative or Lie algebra D through P (D).
We will remind definition of Krull dimension of module [1].

Definition 1. We will define Krull dimension Kdim(M) of the left R-module
M by means of transfinite induction:

1) If M = 0, Kdim (M) =-1;
2) If KdimM ≮ α, Kdim(M) = α if and only if there is no infinite decreasing

chain of submodules
M = M0 ⊃M1 ⊃ . . . ,

such that Kdim (Mi−1/Mi) ≮ α for each i ∈ N;
3) If there is no such oder number alpha that

Kdim (M) = α,

then the module M has no Krull dimension.
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Definition 2. Krull dimension of a ring of R as left R - RR module is called
Krull dimension of R.

V. T. Markov proved the following statement [2].

Theorem 1. Let R be PI-ring, M – faithful left R-module with Krull dimension.
Then:

(a) P (R) is a nilpotent ideal;
(b) If moreover - the module M and the left ideal P (R) - are finitely generated,

then R has Krull left dimension and

Kdim (RR) = Kdim (M).

In 1963 V. N. Latyshev introduced a new class of Lie algebras [3] which he
called special by the analogy with Jordan algebras.

We say that Lie algebra L the special or SPI- Lie algebra if there is associative
PI - algebra A such that L is included in A(−) as Lie algebra, where A(−) – Lie
algebra which has been obtained from A by means of operation [x, y] = xy − yx.

The analog of result of V. T. Markov for special Lie algebras take place.
We will define Krull dimension for modules over Lie algebras and Lie algebras

the same as for associative algebras. As all ideals of Lie algebra are double-sided,
there is not necessity to speak about Krull right and left dimension of Lie algebra,
and we call it Krull dimension.

Definition 3. Let L̄ be a homomorphic image of Lie algebra L in algebra of
endomorphisms End(M) of the module M . The set L̄ is Lie algebra with operation
[x, y] = xy − yx.

We will denote through A(L) associative subalgebra generated by L̄ in algebra of
endomorphisms End(M) of the module M and we will call it the associated algebra
of representation M .

We will call PI - representation of Lie algebra L [4] the representation of algebra
L in algebra of endomorphisms of End(M)(−) of module M over algebra of L, for
which associated algebra of representation A(L) is PI-algebra.

The concept of PI-representations is required as associative algebra A(L) of
representation of special Lie algebra may not to be a PI - algebra.

As an example it is possible to take known irreducible representation of three
dimensional nilpotent Lie algebra in algebra of endomorphisms of a ring of polynoms
from one variable over a field of characteristic zero (see, for example, [5]).

For Lie special algebras the analog of the theorem of V. T. of Markov [2] takes
place.

Theorem 2. Let L - Lie be the special Lie algebra over field F , M – faithful
PI-representation of Lie algebra L with Krull dimension. Then P (L) - a solvable
ideal.
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Lie algebra of L is called semiprime if it doesn’t contain nonzero Abelian ideals.
This definition is equivalent to equality to zero prime radical P (L) of Lie algebra L
[6].

The following analog of a proposition of [2] take place.

Proposition 1. If semiprime special Lie algebra L has the faithful module with
Krull dimensionality, then L is a finite subdirect product of prime Lie algebras.
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Let ⟨Bm×n,∪,∩,′ , O, I⟩ be Boolean algebra of m × n−matrices with entries
belonging to Boolean algebra ⟨B,∪,∩,′ , 0, 1⟩ . The operations ∪,∩,′ and consequent-
ly relation of partial order ⊆ are defined in an elementwise way. The matrices O and
I whose entries are only zeroes 0 and units 1 accordingly, give zero and unit of such
Boolean algebra.

Definition 1. Call matrix C = A⊓B ∈ Bm×k with entries C i
j =

∪n
t=1(A

i
t∩Bt

j)
conjunctive composition of matrices A = (Aij) ∈ Bm×n and B = (Bi

j) ∈ Bn×k.
The disjunctive composition A⊔B is defined in a dual way:A⊔B = (A′ ⊓B′)′.
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Let symbol M(B) denote a set of all matrices of finite sizes, that is, M(B) =∪
m,n∈NBm×n.
The pairs ⟨M(B),⊓⟩ and ⟨M(B),⊔⟩ form partial semigroups with partial binary

operations. Moreover, inequality A ⊆ B implicates A⊓C ⊆ B ⊓C, C ⊓A ⊆ C ⊓B
and A ⊔ C ⊆ B ⊔ C, C ⊔ A ⊆ C ⊔ B. The complement of Boolean matrices is
isomorphism of partial semigroups ⟨M(B),⊓⟩ and ⟨M(B),⊔⟩ because the equalities
(A⊓B)′ = A′⊔B′ and (A⊔B)′ = A′⊓B′ are true. It is known [1], that conjunctive
and disjunctive compositions do not form an associative couple.

Let symbol AT designate transpose of matrix A and A′T = (AT )′ = (A′)T .
Note that (A ⊓ B)T = BT ⊓ AT , (A ⊔ B)T = BT ⊔ AT and (A ⊓ B)′ = A′ ⊔ B′,
(A ⊔B)′ = A′ ⊓B′.

A symbol E denotes below a square unit matrices E = (δij) with entries δij which
are 1 if i = j, and it is 0 if i ̸= j. And corresponding to the context size of matrix
E will not be pointed out.

Definition 2. Call an idempotent matrix A = A⊓A a primary idempotent
if E * A, and a secondary idempotent of partial semigroup ⟨M(B),⊓⟩ if E ⊆ A.

Primary and secondary idempotents of the partial semigroup ⟨M(B),⊔⟩ are
defined in a dual way, that is, matrix A = A⊔A is a primary idempotent if A * E ′,
and a secondary idempotent if A ⊆ E ′

It was shown in [1] and [2] that using operations of dual compositions, comple-
mentation and transposition, any Boolean matrix of arbitrary size generates a secon-
dary idempotent of the right type: AR = A ⊔ A′T , AR = (AR)′T = A ⊓ A′T and a
secondary idempotent of the left type: AL = A′T ⊔ A, AL = (AL)′T = A′T ⊓ A.
Moreover, matrices AR and AL are idempotents of ⟨M(B),⊓⟩, and AR, AL are
idempotents of the partial semigroup ⟨M(B),⊔⟩. It was shown also that Boolean
matrix A is a secondary idempotent of ⟨M(B),⊓⟩ iff A = AR = AL. And a matrix
A is a secondary idempotent of ⟨M(B),⊔⟩ iff A = AR = AL.

It is known [3], [4] that a set of idempotents of the semigroup has a natural
partial order. It is defined by (B ≤⊓ A)↔ (B = B⊓A = A⊓B) for the idempotent
matrices A and B in the partial semigroup ⟨M(B),⊓⟩. And the natural partial order
is defined by (B ≤⊔ A)↔ (B = B ⊔A = A⊔B) for the idempotent matrices A and
B in the partial semigroup ⟨M(B),⊔⟩.

Note that the sets of secondary idempotents of the partial semigroups ⟨M(B),⊔⟩
and ⟨M(B),⊓⟩ do not intersect.

Moreover, the partial order of Boolean algebra of matrices ⊆ and the natural
partial order≤⊔ coincide for a set of the secondary idempotent matrices of the partial
semigroup ⟨M(B),⊔⟩, and the partial order ⊆ and the natural partial order ≤⊓ are
contrary for a set of the secondary idempotent matrices of the partial semigroup
⟨M(B),⊓⟩. Precisely, we get

Theorem 1. The equivalence

A ≤⊔ B ↔ A ⊆ B
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holds for any secondary idempotents A and B of the partial semigroup ⟨M(B),⊔⟩.
If A and B are the secondary idempotents of the partial semigroup ⟨M(B),⊓⟩

then
A ≤⊓ B ↔ B ⊆ A.

REFERENCES

[1] Поплавский В.Б. О приложениях ассоциативности дуальных произведе-
ний алгебры булевых матриц // Фундаментальная и прикладная матема-
тика. 2011/2012. Т. 17, вып. 4. С. 181-192. (Translation: Poplavski V.B. On
applications of associativity of dual compositions in the algebra of Boolean
matrix // Journal of Mathematical Sciences. Vol. 191, №5 (2013). P. 718- 725.)

[2] Поплавский В.Б. Об идемпотентах алгебры булевых матриц // Изв. Сарат.
ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2012. Т. 12,
вып. 2. С. 26-33.

[3] Klifford, A.H.; Preston, G.B. The algebraic theory of semigroups. -1964. -V. 1.

[4] Mitsch H. A Natural Partial Order for Semigroups// Proceedings of the Amer.
Math. Society. Vol.97, N3 (1986). P. 384-388.

Saratov State University

UDC 501.1

ON VARIETIES OF SEMIGROUPS OF RELATIONS
WITH DESCRIPTOR OF FIXED POINT AND

OPERATION OF REFLEXIVE DOUBLE
CYLINDRIFICATION
A. V. Popovich (Saratov)

popovich_al@mail.ru

A set of binary relations Φ closed with respect to some collection Ω of operations
on relations forms an algebra (Φ,Ω) which is called an algebra of relations. One of
the most important operations on relations is the operation of product ◦. Algebra of
relations (Φ, ◦) forms semigroup of relation and any semigroup isomorphic to some
semigroup of relation.

Operations on relations can be defined by a logical formulas. Such
operations are called logical. An important class of logical operations on relations is
the class of diophantine operations. Operation is called diophantine [1, 2] (in other
terminology – primitive positive [3]) if it can be defined by a formula, which contains
in the prenex normal form only operations of conjunction and existence quantifiers.
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Diophantine operations are described using graphs [1, 2, 3]. Denote by N the
set of all natural numbers. A labeled graph is a pair (V, E), where V is a finite set,
called vertex set, and E ⊆ V ×N × V is a ternary relation.

A triple (u, k, v) ∈ E is called an edge from u to v labeled by k, and graphically
represented by u· k→ ·v. By an input-output-pointed labeled graph we mean a
structure G = (V,E, in, out) with two distinguished vertices, where (V,E) is a
labeled graph; in and out are two distinguished vertices called input and output
vertex respectively.

Note that the input-output-pointed labeled graph corresponding to the operation
of relation product ◦ has the following form:

We shall concentrate our attention on the operations of relation product ◦,
descriptor of fixed point ∇1, and operation of reflexive double cylindrification ∇2.
These operations are defined as follows:

∇1(ρ) = {(x, x) : (∃y)(y, y) ∈ ρ}, ∇2(ρ) = {(x, y) : (∃z)(z, z) ∈ ρ}.

The input-output-pointed labeled graphs corresponding to these operations have
the following forms:

For the set Ω of operations on binary relations, denote by R{Ω} the class of
algebras isomorphic to algebras of relations with operations from Ω. Let V ar{Ω} be
the variety generated by the class R{Ω}.

The basis of identities of the variety generated by a class of semigroups of binary
relations with descriptor of fixed point ∇1 is obtained in [4].

The following theorem gives the basis of identities for the variety
V ar{◦,∇1,∇2}.

Theorem 1. An algebra (A, ·, ⋆, ∗) of the type (2,1,1) belongs to the variety
V ar{◦,∇1,∇2} if and only if it satisfies the identities:

(xy)z = x(yz), (x⋆)2 = x⋆, (x∗)2 = x∗, xy⋆ = y⋆x,

x∗xx∗ = x∗, (x∗y)2 = x∗y, (xy∗)2 = xy∗,
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(xy)⋆ = (yx)⋆, (xy)∗ = (yx)∗, x∗yz∗ = z∗yx∗, (xy⋆)⋆ = y⋆x⋆,

(xy∗z)∗ = y∗zxy∗, x∗yx∗zx∗ = x∗zx∗yx∗, x∗⋆ = x⋆, x⋆∗ = x∗,

(xy⋆)∗ = x∗y⋆, (x∗y∗)⋆ = x⋆y⋆, (x∗yz∗)⋆ = x⋆(yz∗)⋆,

(xy∗z)⋆ = (xy∗)⋆(y∗z)⋆, x∗(xp)∗ = x∗ for any prime number p.

The basis of identities found in the Theorem 1 is infinite. Is there a finite basis
for this variety? The answer to this question is given by Theorem 2.

Theorem 2. The variety V ar{◦,∇1,∇2} is not finitely based.
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In 1938 г. Hua Loo-Keng [1] proved that any sufficiently large natural number
N ≡ 5(mod 24) is a sum of five squares of primes. This paper deals with the
analogue of this problem when the prime p is replaced by the shifted prime p + 1,
namely, we obtain an asymptotic formula for the number of such representations
and determine arithmetic conditions under which the singular series of the problem
is larger than absolute positive constant that depends solely on N . Statement of the
problem belongs to professor V. N. Chubarikov.
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Theorem 1. [2] Let I2(N, 1) denote the number of representations of a natural
number N as a sum of five squares of shifted primes pi+1, i = 1, 5. Then for I2(N, 1)
the following asymptotic formula is valid:

I2(N, 1) =
4π2S(N)N

3
2

3L 5
+O

(
N

3
2

L 6

)
, L = lnN,

where singular series S(N) converges absolutely and the following relation holds true

S(N) =

{
c(N), если N ≡ 0 (mod 4);
0, если N ̸≡ 0 (mod 4),

c(N) > 2
∏
p>7

(
1− 10

φ2(p)

)
.

The proof of the theorem 1 is bases on author’s papers [3, 4, 5]. These results
are formulated as lemmas 1, 2, 3 and deal with

• the study of singular series

S(N) =
∞∑
q=1

1

φ5(q)

q∑
a=0

(a,q)=1

 q∑
n=1

(n,q)=1

e

(
a(n+ 1)2

q

)
5

e

(
−aN

q

)

and determining arithmetic conditions under which the singular series is larger
than absolute positive constant that depends solely on N ;

• the study of behavior of exponential sums over primes

Vm(α;x, k) =
∑
p6x

e(α(p+ k)m), α =
a

q
+ λ, (a, q) = 1, |λ| 6 1

qτ
, 1 6 q 6 τ,

when α is approximated by a rational number with small denominator. There
we establish the relationship between this exponential sum and the density
theorems for the zeroes of Dirichlet L – series in a short rectangle of a critical
strip;

• estimating V2(α; x, 1) when α is approximated by a rational number with large
denominator.

Lemma 1. The following relationship is valid

S(N) =

{
c(N), если N ≡ 0 (mod 4);
0, если N ̸≡ 0 (mod 4),

where c(N) – is an absolute positive constant that depends solely on N and

c(N) > 2
∏
p>7

(
1− 10

φ2(p)

)
.
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Lemma 2. Suppose that x > x0, τ > xm− 3
8 exp(ln0,76 x), q 6 x

1
4 exp

(
− ln0,76 x

)
,

b > 222(m+ 1) is an arbitrary fixed positive number, k is a fixed positive natural,

Tm(a, q) =

q∑
n=1

(n,q)=1

e

(
a(n+ k)m

q

)
, F (q, x) =

{
exp(− ln4 lnx) если q 6 (lnx)b,

(lnx)B+4 если q > (lnx)b.

Then the following estimate holds:

Vm(α; x, k) =
Tm(a, q)

φ(q)
γ(λ;x, k) +

(
xq

m
m+1

φ(q)
F (q, x)

)
,

γ(λ;x, k) =

∫ x

2

e(λ(u+ k)m)

lnu
du.

Lemma 3. Suppose that x > x0, then the following estimate holds

V2(α; x, 1) =
∑
p6x

e(α(p+ 1)2)≪
(
xq−

1
8 + x

15
16 + x

3
4 q

1
8

)
L 8.
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Estermann [1] proved an asymptotic formula for the number of solutions of the
equation

p1 + p2 + n2 = N, (1)

where p1, p2 are primes and n is a natural number.
Professor V. N. Chubarikov stated the following problem: To study the equation

(1), where the summand n2 is replaced by [nc], c is a fixed noninteger and impose
more rigid conditions, namely, when the summands are almost equal. We call it
the generalized Estermann’s ternary problem with almost equal summands for non-
integer powers of natural numbers.

Theorem 1. [2] Suppose that N is a sufficiently large positive integer, L = lnN ,
c is a fixed noninteger satisfying the following conditions

∥c∥ > 3c
(
2[c]+1 − 1

) ln L

L
, c >

4

3
+ L −0,3. (2)

Let us denote by I(N,H) the number of solutions of the equation

p1 + p2 + [nc] = N,

∣∣∣∣pi − N

3

∣∣∣∣ 6 H, i = 1, 2,

∣∣∣∣[nc]− N

3

∣∣∣∣ 6 H

in primes p1, p2 and natural numbers n. Then for H > N1− 1
2cL 2 the following

asymptotic formula is valid:

I(N,H) =
18

3
1
c c
· H2

N1− 1
c L 2

+O

(
H2

N1− 1
c L 3

)
.

Corollary 1. Every positive integer N > N0 is represented as a sum of two
primes p1, p2 and non-integer power of a natural number m satisfying the following
conditions∣∣∣∣pi − N

3

∣∣∣∣ 6 N1− 1
2cL 2,

∣∣∣∣∣m−
(
N

3

) 1
c

∣∣∣∣∣ 6 3

3
1
c c
N

1
2cL 2 − 9(c− 1)

3
1
c 2c2

L 4 + 1,

where c is is a fixed noninteger that satisfies (2).

The proof of the theorem 1 is based Hardy-Littlewood-Ramanujan circle method
in a form of Vinogradov’s exponential sums. It consists of

• a lemma 1 on the estimate of short exponential sum Sc(α; x, y) with non-integer
power a of natural number for α ∈ [−0, 5, 0, 5], including the neighbourhoods
of points with small denominators except for a small neighbourhood of zero;

• a lemma 2 on the asymptotic formula for the sum Sc(α; x, y) with the reminder
term for points α, lying in a small neighbourhood of zero;
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• a lemma 3 on the behavior of short exponential sums over primes S(α; x, y)
for points α, lying in a small neighbourhood of zero

Lemma 1. [3, 4] Suppose that x > x0 > 0, Lx = ln x, A is a fixed positive integer
larger than one, c is a noninteger satisfying

1 < c 6 log2 Lx − log2 ln L 6A
x , ∥c∥ >

(
2[c]+1 − 1

)
(A+ 1) L −1

x ln Lx.

Then for y >
√

2cxL A+θ
x and x1−cy−1L A

x 6 |α| 6 0, 5 the following estimate is
valid

Sc(α; x, y) =
∑

x−y<n6x
e(α[nc])≪ yL −A

x ,

where θ = 0 if c > 1, 1 and θ = 0, 5 if c < 1, 1.

Lemma 2. [3, 4] Suppose that x > x0 > 0, A is a fixed positive integer larger
than one, c is a noninteger satisfying

1 < c 6 log2 L − log2 ln L 6A, ∥c∥ >
(
2[c]+1 − 1

)
(A+ 1)

ln L

L
.

Then for y >
√

2cx
1
2L A and |α| 6 x1−cy−1L A the following asymptotic formula is

valid

Sc(α;x, y) =
sinπα

πα

∫ x

x−y
e(α(tc − 0, 5))dt+O

(
y| sinπα|

L A

)
.

Lemma 3. [5] Suppose that x > x0, y > x
5
8 exp(lnx)0,67 and |α| 6 x

y2
. Then the

following equality holds:

S(α; x, y) =
∑

x−y<n≤x

Λ(n)e(αn) =
sin παy

πα
e
(
α
(
x− y

2

))
+O

(
y exp(− ln4 lnx)

)
.
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Vinogradov’s method to estimate exponential sums over prime numbers allowed
him to solve number of problems on prime numbers. One of the problems is a
distribution of fractional parts of {αp}, where he obtained more accurate results
than in general case of distribution of fractional parts of {αnpn + . . .+ α1p}:

Theorem 1. ([1, 2]). Let K be an integer, K 6 N , and α be a real number,

α =
a

q
+

θ

q2
, (a, q) = 1, 1 6 q 6 N,

then we have

VK(N) =
K∑
k=1

∣∣∣∣∣∑
p6N

e(αkp)

∣∣∣∣∣≪ KN1+ε

(√
1

q
+

q

N
+N−0,2

)
.

The basis of this estimate are “Vinogradov’s sieve” and nontrivial estimates of
exponential sums of the form

W =
∑
k6K

∣∣∣∣∣∣∣
∑

F1<m6F2

a(m)
∑

G1<n6G2
mn6x

b(n)e(αkmn)

∣∣∣∣∣∣∣ ,
where a(m) and b(n) are arbitrary complex valued-functions, K, F , G are natural
numbers, F 6 F1 < F2 6 2F , G 6 G1 < G2 6 2G.

In this paper we will formulate theorems 2 and 3 on the estimate of exponential
sums of the form

W (x, y) =
∑
k6K

∣∣∣∣∣∣∣
∑

F1<m6F2

a(m)
∑

G1<n6G2
x−y<mn6x

b(n)e(αkmn)

∣∣∣∣∣∣∣ .
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These sums are obtained from W (x) by replacing the condition mn 6 x with the
x − y < mn 6 x where

√
x < y 6 xL −1

x , Lx = ln xq. We also formulate their
application, namely, theorem 4 to estimate the sums of short exponential sums over
prime numbers of the form

VK(N,H) =
K∑
k=1

∣∣∣∣∣ ∑
N−H<n6N

Λ(n)e(αkn)

∣∣∣∣∣ , H 6 N

lnN
.

These sums arise in the study of distribution law of fractional parts of {αp}, when
prime number p lies in a short interval N −H < p 6 N .

Let us formulate the results. Theorem 1 deals with estimating the sum W (x, y)
that contains a “long” flat sum:

Theorem 2. Suppose that the sum W (x, y) satisfies the following conditions:
F 6 y, K 6 y, 1 < q 6 Ky,

∑
t62KF

 ∑
t=mk, 16k6K

F<m62F

|a(m)|


2

≪ KFL ca
x , (1)

ca is an absolute constant. If b(n) = 1, then the following estimate is valid

W (x; y)≪


Ky

(
1

q
+
F

y

) 1
2

L
ca+1

2
x , если q < 4KF ;

Ky ·
√

q

Ky
L

ca+1
2

x , если q > 4KF .

Corollary 1. Suppose that A is an absolute constant. If y > FL 2A+ca+1
x and

L 2A+ca+1
x 6 q 6 KyL −2A−ca−1

x then the following estimate is valid:

W (x, y) =
∑
k6K

∣∣∣∣∣∣∣
∑

F1<m6F2

am
∑

G1<n6G2
x−y<mn6x

e(αkmn)

∣∣∣∣∣∣∣≪
Ky

L A
x

.

Theorem 2 deals with the sum W (x, y), where sums constituting the double
summation are “close” by order.

Theorem 3. Suppose that the following conditions are satisfied in a
sum W (x, y): F 6 y, G 6 y, K 6 y, 1 < q 6 Ky2x−1,∑

F1<m6F2

|a(m+m∗
1)|2 ≪ FL ca

x ,
∑

G1<n6G2

|b(n)|2 ≪ GL cb
x , (2)
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ca and cb are absolute constants, m∗
1 = 0 or F < m∗

1 6 2F . Then the following
estimate is valid

W (x, y)≪


Ky

(
1

q
+
F

y
+
x2F−2L −4

x

y2

) 1
4

L
ca+cb

2
+1

x , если q <
2Ky

G
;

Ky

(
qx

Ky2
+
x2F−2L −4

x

y2

) 1
4

L
ca+cb

2
+1

x , если q > 2Ky

G
.

Corollary 2. Suppose that A is an absolute constant. If either of the two
conditions are true:

i. y > max(FL 4A+2ca+2cb+4
x , xF−1L 2A+ca+cb

x ) и L 2ca+2cb+4A+4
x 6 q < 2KyG−1;

ii. y > xF−1L 2A+ca+cb
x и 2KyG−1 6 q 6 Ky2x−1L −2ca−2cb−4A−4

x ,

then the following estimate holds

W (x, y)≪ Ky

L A
x

.

Theorem 4. Suppose that K, H, N and q are natural numbers, K 6 H, A is
an absolute constant, L = lnNq, α is a real number and

α =
a

q
+

θ

q2
, (a, q) = 1, L 4A+20 6 q 6 KH2

N
L −4A−20.

If H ≫ N
2
3L 4A+16 then the following estimate is valid

VK(N,H)≪ KH

L A
.

The proof of the theorem is based on Vinogradov’s method of estimating expo-
nential sums with prime numbers in a combination with the methods described in
papers [3, 4, 5], using corollaries 1 and 2.
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The authors [6] formulate the problem of values of trigonometric sums nets.
Algebraic nets are a particular case of generalized parallelepipedal nets. General

theory of generalized parallelepipedal nets was laid in the works [8] — [10].
The purpose of the work is to obtain a formula for trigonometric sums with grid

scale, expressing the value of the funds through a number of points of a lattice.
In 1976, published K. K. Frolov [16], which first appeared algebraic nets. Most

fully in the author’s exposition of the method Frolov presented in his PhD thesis
[17]. Later in the works of N. M. Dobrovol’skii [8] — [10] offered a modification of
the method Frolov, using special weight functions. Modern full details of the method
Frolov and its modifications by N. M. Dobrovolsky is given in the works [1] — [4].

We will use the notation and definitions from work [15].

Definition 1. For an arbitrary Λ generalized lattice paralelipipedului net M(Λ)
is the set of M(Λ) = Λ∗ ∩Gs.

Net M1(Λ) = Λ∗ ∩ [−1; 1)s.
Generalized paralelipipedului mesh type II M ′(Λ) is the set M ′(Λ) = {x⃗ | x⃗ =

{y⃗}, y⃗ ∈M1(Λ)}.

Definition 2. Weight function of order r with B constant named smooth func-
tion ρ(x⃗) satisfying the conditions

0∑
ε1,...,εs=−1

ρ(x⃗+ (ε1, . . . , εs)) = 1 if x⃗ ∈ Gs, (1)

ρ(x⃗) = 0 if x⃗ /∈ (−1; 1)s, (2)∣∣∣∣∣∣
1∫

−1

. . .

1∫
−1

ρ(x⃗)e2πi(σ⃗,x⃗)dx⃗

∣∣∣∣∣∣ 6 B(σ1 . . . σs)
−r for any σ⃗ ∈ Rs. (3)

1Work is performed on a grant RFBR №11-01-00571a
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If conditions (1) and (2), we talk about just the weight function ρ(x⃗).

Definition 3. A quadrature formula with a generalized paralelipipedului mesh
typ II and the weight function ρ(x⃗) is called the formula of the form

1∫
0

· · ·
1∫

0

f(x⃗)dx⃗ = (det Λ)−1
∑

x⃗∈M ′(Λ)

ρx⃗f(x⃗)−RN ′(Λ)[f ],

where ρx⃗ =
∑

y⃗∈M1(Λ),{y⃗}=x⃗

ρ(y⃗), N ′(Λ) = |M ′(Λ)|,

RN ′(Λ)[f ] — the error of a quadrature formula.

For the errors of quadrature formulas with a generalized paralelipipedului mesh
type II on the class Eα

s a fair assessment (see [10], [15])

RN ′(Λ)[E
α
s (C)] = sup

f∈Eα
s (C)

|RN ′(Λ)[f ]| 6 CB · c1(α)sζH(Λ|α),

where c1(α) = 2α+1

(
3 +

2

α− 1

)
, ζH(Λ|α) =

∑′

x⃗∈Λ

(x1 . . . xs)
−α.

Let a⃗ = (a0, a1, . . . , as−1) — integer vector such that the polynomial

Pa⃗(x) =
s−1∑
ν=0

aνx
ν + xs (4)

is irreducible over the rationals and all the roots Θν (ν = 1, . . . , s) of equation (4) is
valid.

Denote by T (⃗a) matrix degrees algebraically paired integer algebraic numbers
Θ1,. . . ,Θs — roots of a polynomial Pa⃗(x):

T (⃗a) =


1 . . . 1

Θ1 . . . Θs
...

...
...

Θs−1
1 . . . Θs−1

s

 , (5)

and through Θ⃗ = (Θ1, . . . ,Θs) — is vector of the full set of algebraically paired
numbers — roots of the polynomial Pa⃗(x).

For any t > 0 lattice Λ(t · T (⃗a)) is called algebraic. It has the form

Λ(t · T (⃗a))=

{⃗
x=

(
t

s∑
ν=1

Θν−1
1 mν , . . . , t

s∑
ν=1

Θν−1
s mν

)
= t · m⃗ · T (⃗a)

∣∣∣∣∣ m⃗ ∈ Zs
}
.
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The set M ⊂ Gs points Mk = (ξ1(k), . . . , ξs(k)) (k = 1 . . . N) is called it the
grid M of N nodes, and themselves point - it the nodes of the quadrature formulas.
Size ρk = ρ(Mk) are called weights of the quadrature formula.

For an arbitrary integer m1,. . .,ms amount SM,ρ⃗(m1,. . .,ms), defined by equality

SM,ρ⃗(m1,. . .,ms) =
N∑
k=1

ρke
2πi[m1ξ1(k)+...+msξs(k)], (6)

called trigonometric sums grid with weights.
Let the matrix T = T (⃗a) and t > 0. Consider the algebraic net M(t) = M ′(t ·

Λ(T )) from N ′(t · Λ(T )) sites x⃗k (k = 1, . . . , N ′(t · Λ(T )) ) with weights

ρk = ρx⃗k = (det(t · Λ(T )))−1
∑

{y⃗}=x⃗k, y⃗∈M1(t·Λ(T ))

ρ(y⃗)

and trigonometric sum with weights

SM(t),ρ⃗(m⃗) = (det(t · Λ(T )))−1
∑

x⃗∈M(t)

 ∑
{y⃗}=x⃗, y⃗∈M1(t·Λ(T ))

ρ(y⃗)

 e2πi(m⃗,x⃗).

Theorem 1. For an arbitrary lattice Λ and an arbitrary weight function ρ(x⃗)
true equality2

SM,ρ⃗(m⃗) = δ(m⃗) +
∑′

x⃗∈Λ

1∫
−1

. . .

1∫
−1

ρ(y⃗)e2πi(y⃗,m⃗−x⃗)dy⃗, (7)

where

δ(m⃗) =

{
1, if m⃗ = 0⃗;

0, if m⃗ ̸= 0⃗, m⃗ ∈ Zs.

Theorem 1 and the definition of a weight function ρ(x⃗) of order r with the
constant B allows to obtain an estimate for the trigonometric sums generalized
paralelipipedului grid with weight function

|SM,ρ⃗(m⃗)− δ(m⃗)| 6 B
∑′

x⃗∈Λ

(m1 − x1 . . .ms − xs)−r.
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A class of algebraic systems which is closed under homomorphic images and finite
subdirect products is called a formation.

Formations was widely used in group theory ([1]). Particularly, the saturated
formations of groups is one of the most studied formations. A formation of groups
is said to be a saturated formation if G/Φ(G) ∈ F implies G ∈ F for an arbitrary
group G and it’s Frattini subgroup Φ(G).

Generalizations of these definitions had made by several authors ([2, 1] for
example). We recall such definitions from [1]. A congruence θ on the algebraic system
A is called a Frattini congruence if the union of all θ-classes generated by the elements
of B differs from A for each proper subsystem B of the algebraic system A. A class
X is saturated in the class Y, if A ∈ Y and A/θ ∈ X for some Frattini congruence θ
on A implies A ∈ X.

We consider finite formations of monounary algebras ([3]) in this paper.
An element a of a monounary algebra ⟨A, f⟩ is cyclic if fn(a) = a for some

positive integer n. A monounary algebra is cyclic if all of it’s elements are cyclic.

Theorem 1. The empty formation, the formation of all finite cyclic monounary
algebras and the formation of all finite monounary algebras are the only saturated
formations in the class of all finite monounary algebras.
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All events on formation of the new direction of mathematical researches - "A
number-theoretic method in the approximate analysis occurred in Mathematical
institute of V. A. Steklov of Academy of Sciences of the USSR within work of
a seminar on number-theoretic methods in the approximate analysis, organized
in 1956. As N. M. Korobov specifies: "Meeting of a seminar was held under the
chairmanship of one of three of his heads — N. S. Bakhvalova (Moscow State
University), N. N. Chentsov (IPM of Academy of Sciences of the USSR) and N.
M. Korobov (MI of Academy of Sciences of the USSR)" [13].

According to associate professor E. A. Morozova, N. N. Chentsov’s widow, the
initiative of the organization of such seminar proceeded from Nikolay Nikolaevich
Chentsov who worked at this time in I. M. Gelfand’s dealing with computing prob-
lems of the domestic nuclear project the group.

In five years participants of a seminar did considerable work on which heads
reported at the Fourth All-Union mathematical congress in 1961 in Leningrad. On
behalf of heads the report was done by N. N. Chentsov. The list of publications
was provided in the report from 27 names, from which 12 in Reports of Academy of
Sciences of the USSR.

Results of work of a seminar of three K for the first six years of work were reflected
in N. M. Korobov’s monograph in 1963 [11] (the second edition left [14]in 2004).
Abroad some monographs (see, for example,[21])]) were devoted to this problem.

Thus, we see that the solution of the vital problems of the computing practice
which has arisen during implementation of the domestic nuclear project was motive

1Work is performed on a grant RFBR №11-01-00571a
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of the organization of scientific activity on development of new multidimensional
quadrature formulas.

Therefore the history of development of a number-theoretic method in the appro-
ximate analysis shares on two parts. The first part — is open theoretical part in which
the first results and which continued to develop successfully all last 57 years were
received. And the second part — is the applied closed part which it is possible to
guess only.

Analyzing national history of development of a number-theoretic method in the
approximate analysis, it is possible to allocate some stages of this development.

First, it is the initial stage 1956 — 1967. Rather complete actual idea of this
stage can be received on works [11], [20] and [12].

The following stage of development of a number-theoretic method can be carried
to 1976 - 1980гг. This stage first of all is connected with K. K. Frolov’s works [18],
[19]. At this stage there was a few operation, but K. K. Frolov’s works made a basic
contribution to the theory as optimum quadrature formulas on the class Eα

s were
constructed.

About the Tula stage developments of a number-theoretic method in the appro-
ximate analysis it is possible to gain rather complete idea on works [1] — [10], [15]
— [17].

Undoubtedly, studying of history of development of a number-theoretic method
in the approximate analysis is now in a stage of formation and demands further
systematic researches.
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NUMBER THEORETIC METHODS FOR SOLVING
PARTIAL DIFFERENTIAL EQUATIONS1

A. V. Rodionov (Tula)
rodionovalexandr@mail.ru

A partial differential equation for the function u(t, x⃗) is an equation of the form

∂u

∂t
= Q

(
∂

∂x1
, . . . ,

∂

∂xs

)
u(t, x⃗), (1)

0 6 t 6 T, −∞ < xν <∞ (ν = 1, . . . , s),

u(0, x⃗) = φ(x⃗), x⃗ = (x1, . . . , xs), (2)

where

Q

(
∂

∂x1
, . . . ,

∂

∂xs

)
=

n1∑
j1=0

. . .
ns∑
js=0

aj1,...,js
∂j1

∂xj11
. . .

∂js

∂xjss
(3)

is Differential operator of order n(Q) = n1 + . . . + ns, and φ(x⃗) = φ(x1, . . . , xs)
— periodic with unit period in each of its arguments a function of class Eα

s (α >
m(Q) + 1).

Then,

φ(x1, . . . , xs) =
∞∑

m1=−∞

. . .
∞∑

ms=−∞

cm1,...,mse
2πi(m1x1+...+msxs) (4)

and the Fourier coefficients of the estimate

|cm1,...,ms| 6
∥φ∥Eα

s

(m1 . . .ms)α
. (5)

1Work is executed on grantu of RFFI № 11-01-00571a
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Quantity

∥φ∥Eα
s

= sup
m1,...,ms

|cm1,...,ms(m1 . . .ms)
α| <∞ (6)

is the norm in space Eα
s , with respect to which it is non-separable Banach space.

Definition 1. Discrete Cauchy problem with lattice Λ is an equation of the form

∂u

∂t
= Q

(
∂

∂x1
, . . . ,

∂

∂xs

)
u(t, x⃗) (7)

0 6 t 6 T, −∞ < xν <∞ (ν = 1, . . . , s). (8)

Discrete initial displacement:

u(0, x⃗) = φ(x⃗), x⃗ ∈M(Λ), (9)

where φ(x⃗) is periodic function of class Eα
s (α > m(Q) + 1).

Solution of the discrete Cauchy problem with the lattice Λ called trigonometric
polynomial with variable coefficients u(t, x⃗) ∈ T(M∗(Λ)), which satisfies (7) in (8)
discrete initial conditions (9).

Theorem 1. Solution of the discrete Cauchy problem with the lattice Λ is trigo-
nometric polynomial

u(t, x⃗) =
∑

m⃗∈M∗(Λ)

c(m⃗)eQ(m⃗)te2πi(m⃗,x⃗), (10)

where
c(m⃗) = cM(Λ),M∗(Λ)(m⃗) =

1

N

∑
y⃗∈M(Λ)

φ(y⃗)e−2πi(m⃗,y⃗). (11)

Discrete Cauchy problem with lattice Λ for partial differential equations можно
is approximation to the solution of the Cauchy problem (1) — (3).

REFERENCES

[1] Dobrowolsky N. M., Esayan А. R., Andreeva O. V., Zaitseva N. V. Multivariate-
theoretic Fourier interpolation. Chebyshevskij sbornik [Chebyshevsky collection].
2004 vol. 5, iss. 1 (9), pp. 122 — 143 (in Russian).

[2] Korobov N. M. Teoretiko-chislovye metody v priblizhennom analize (vtoroe
izdanie) [Number-theoretic methods in approximate analysis (second edition)].
2004, Moscow. (in Russian).



Algebra and number theory: modern problems and applications 161

[3] Rodionov A. V. On the method of V. S. Ryabenky — N. M. Korobov approximate
solutions of partial differential equations. Chebyshevskij sbornik [Chebyshevsky
collection], 2009, vol. 10, iss. 3 (in Russian).

[4] Ryabenky V. S. A method for obtaining difference schemes andthe use of nets
teoretikochislovyh for solutionthe finite difference method. Tr. matem. in-ta im.
V. A. Steklova. [Tr. Math. Inst. V. A. Steklov], 1961, vol. 60, pp. 232 — 237, (in
Russian).

Leo Tolstoy Tula State Pedagogical University

UDC 511.3
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In 1959 year professor N. M. Korobov offered the new class of teoretiko-of numerical
nets — parallelepiped nets:

Mk =

({
a1k

N

}
, . . . ,

{
ask

N

})
(k = 1, 2, . . . , N)

and the proper squaring formulas with equal scales

1∫
0

· · ·
1∫

0

f(x⃗) dx⃗ =
1

N

N−1∑
k=0

f

({
a1k

N

}
, . . . ,

{
ask

N

})
−RN [f ],

where RN [f ] – is an error of squaring formula.
On the class of Eα

s of periodic functions with the quickly converging rows of
Fourier’s the best results were got

|RN [f ]| << lnα(s−1)N

Nα
(N. S. Bakhvalov [2], N. M. Korobov [10]).

The special place of parallelepiped nets with optimum coefficients is explained by
a circumstance that squaring formulas with these nets set the unsatiated algorithms
of numeral integration on classes Eα

s (α > 1) (см. [1], [12]).
By the quantitative measure of quality of set of coefficients of a0, a1,. . . , as of

parallelepiped net is named size

H(p, a⃗) =
3s+1

p

p−1∑
k=0

s∏
j=0

(
1− 2 ·

{
aj · k
p

})2

, (1)

1Work is executed on grantu of RFFI №11-01-00571a
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which is equal to the close value of integral from a periodic function

h(x⃗) =
3s+1

p

s∏
j=0

(1− 2{xj})2

on a squaring formula with a parallelepiped net

1 =

∫ 1

0

. . .

∫ 1

0

h(x⃗)dx⃗ =
3s+1

p

p−1∑
k=0

s∏
j=0

(
1− 2 ·

{
aj · k
p

})2

−Rp[h],

where Rp[h] — is an error of close integration.
Choice of function h(x⃗) and sizes H(p, a⃗) related to that function h(x⃗) it is the

border function of class Eα
s

(
·, π2

6

)
(details of see [11]).

The quantitative measure of quality of optimum coefficients plays an important
role in modern researches on the theory of oai?aoeei-?eneiaiai method of close
analysis (см. [2] — [4], [6] — [11], [13] — [17]).

We will put p1 =

[
p− 1

2

]
, p2 =

[p
2

]
. A next lemma is just.

Lemma 1. Equality is just

3

(
1− 2

{
x

p

})2

= 1 +
2

p2
+

p2∑′

m=−p1

6

p2 sin2 πm
n

e
2πi
mx

p .

From which a theorem follows about the eventual row of Fur’e for the quantitative
measure of quality of optimum coefficients.

Theorem 1. Equality is just

H(p, a⃗) =

(
1 +

2

p2

)s
+

p2∑′

m1,...,ms=−p1

δp()

ψ(m1) . . . ψ(ms)
,

где

ψ(m) =


p2

p2 + 2
, при m = 0;

p2 sin2 πm
p

6
, при m ̸= 0.
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ESTIMATES OF VOLUMES OF THE BINARY CODE
NEIGHBORHOODS IN TERMS OF ITS SPECTRA1

A. A. Serov (Moscow)
serov@mi.ras.ru

Two-sided estimates of the number of elements belonging to the r-neighborhood
of a binary code in terms of its weight or distance spectra are obtained. These
estimates are specified for first and second order Reed-Muller codes.

Let F2 be the field of two elements. For an arbitrary natural number n denote
by Fn2 the n-dimensional space over F2. On the space Fn2 we introduce Hamming
metric: distance d(x, y) between vectors x, y ∈ Fn2 is equal to the number of non-
zero coordinates of their difference.

Arbitrary subset of the binary space Fn2 is called binary code C (see, e.g., [1]),
and the code elements — codewords. The number n is called length of codewords
and the code itself.

Distance from an arbitrary x ∈ Fn2 to the zero vector is called Hamming weight
(or weight) wt(x) of the vector x. The value d(x, C) = min

y∈C
d(x, y) is called the

distance from x ∈ Fn2 to the code C.
1This work was supported by RFBR, grant 14-01-00318
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Code distance d = d(C) is defined as minimal distance between two different
elements of the code C:

d (C) = min
a,b∈C
a ̸=b

d(a, b).

Binary distance invariant code is a subset C of the space Fn2 such that for all
x ∈ C the multisets of Hamming distances ρ(x, y), y ∈ C, are the same. Reed-Muller
and perfect codes are particular cases of the distance invariant codes (see, e.g., [2],
[3]).

Split the space Fn2 on layers Fn2 (i) = {x ∈ Fn2 : wt(x) = i} and let

N (2)
n (i, r)

def
= |{x ∈ Fn2 : max{d(x, 0), d(x, c)} 6 r,wt(c) = i}| .

Theorem 1. Let C ⊂ Fn2 be the binary distance invariant code of length n with
minimal distance d and

Wi = Fn2 (i) ∩ C, i ∈ {0, 1, . . . , n},

be the sets of codewords of the same weight, {|Wi|}ni=0 be weight spectrum of the code
C. Then

|F2(C, r)| = (1− q(n, r))|C|
r∑

m=0

Cm
n ,

where q(n, r) = 0 for 0 6 r < d/2 and

0 6 q(n, r) 6
(

2
∑r

m=0
Cm
n

)−1
n∑
i=1

|Wi|N (2)
n (i, r), d/2 6 r 6 n.

Several explicit estimates for
r∑

m=0

Cm
n and N (2)

n (i, r) are given below in the state-

ments 1 and 2.

Theorem 2. Let C ⊂ Fn2 be the binary code of length n with minimal distance
d,

Wi(C) = {(c1, c2) : c1, c2 ∈ C, d(c1, c2) = i}, i ∈ {0, 1, . . . , n},

be sets of ordered codeword pairs with a given distance between them and F2(C, r) =
= {x ∈ Fn2 : d (x, C) 6 r} be r-neighborhood of the code C. Then

|F2(C, r)| = (1− q(n, r))|C|
r∑

m=0

Cm
n ,

where q(n, r) = 0 for 0 6 r < d/2 and

0 6 q(n, r) 6
(

2|C|
∑r

m=0
Cm
n

)−1
n∑
i=1

|Wi(C)|N (2)
n (i, r), d/2 6 r 6 n.
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Statement 1 ([4]). For r 6 n/2 the estimates are true

2nΦ

(
−
√
nV
(
1− 2r

n

))
6

r∑
m=0

Cm
n 6 2nΦ

(
−
√
nV
(

1− 2(r+1)
n

))
, (1)

where V (z) = (1− z) ln(1− z) + (1 + z) ln(1 + z) =
∞∑
s=1

z2s

s(2s−1)
> z2 for |z| < 1.

Statement 2. If 0 6 r 6 [n/2] and 0 6 i 6 n then

N (2)
n (i, r) 6 C

i/2
i C

r−i/2
n−i

1 + qi
(1− qi)2

for even i;

N (2)
n (i, r) 6 C

[i/2]
i C

r−[i/2]
n−i

2

(1− qi)2
for odd i,

where qi = r−[i/2]
n−i+[i/2]−r+1

6 q = r
n−r+1

.

In [4] we have obtained explicit two-sided estimates for r-neighborhood of the
binary first order Reed-Muller code, which are a consequence of theorem 1. Similar
estimates for the second order Reed-Muller code are obtained by the author in [5].
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We say that semigroup S acts on a set X from the right, and that X is right S-act
via α : X×S → X, (α : (x, s) 7→ xs ∈ X) if x(st) = (xs)t for all x ∈ X, s, t ∈ S. The
diagonal right act of S is the set S × S on which S acts via (x, y)s = (xs, ys). Right
diagonal rank of semigroup S (is denoted by rdrS) is called the smallest cardinality
of generating set this act (S × S)S.

Diagonal rank of finite semigroup is interesting feature of this semigroup reflec-
ting its properties. For example, if G is a group of n elements then rdrS = n. The
purpose of this paper to compute right diagonal ranks of Rees matrix semigroups.

Теорема 1. Let S =M(G, I,Λ, P ) be Rees semigroup of matrix type over the
group G with sandwich matrix P (see. [1], §3.1) and |I|, |Λ|, |G| <∞. Then the right
diagonal rank of semigroup S does not depend on the matrix elements P (depends
only on its size) and if Λ consists of one element the right diagonal rank of semigroup
S is equal to |I|2|G|, |I|2|G|2|Λ|(|Λ| − 1) otherwise.

Теорема 2. Let S =M0(G, I,Λ, P ) be Rees semigroup of matrix type over the
group with zero G ∪ {0}. Let |I| = k, |G| = t, |Λ| = l. Then for l ≥ 2

(i) if P has no zeros, then rdrS = k2t2(l2 − l) + 2k,

(ii) if P has non-zero elements, but has no column with two or more non-zero
elements, then rdrS = k2t2(l2 − l) + k2t,

(iii) in other cases rdrS = k2t2(l2 − l).

If l = 1, then rdrS = k2t+ 2k.
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We consider the set of finite matrices over an arbitrary Boolean algebra. The
dual partial operations of multiplication ⊓ and ⊔ are defined naturally. The (m×k)-
matrix C = A ⊓ B with the elements cij =

∪n
t=1(ait

∩
btj) is called the conjunctive
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product of an (m× s)-matrix A = (aij) and an (s× k)-matrix B = (bij) (m, s, k are
positive integers). We dually define the disjoint product A ⊔B: A ⊔B = (A′ ⊓B′)′.

We consider the idempotents of the partial finite matrix semigroups under the
introduced operations of multiplication ⊓ and ⊔. All of the idempotent matrices
are divided into primary and secondary idempotents (secondary idempotents are
obtained by a special procedure, which uses the operations of multiplication, transpo-
sition, and closure operation). Let i(A) = A ⊔ A′⊤. It is easy to prove that for any
(m×n)-matrix A i(A) is an (m×m)-idempotent. It is known [1], [2] that secondary
idempotents are concerned with solvability of matrix equations and with Green’s
relations on partial semigroups of Boolean finite matrices. It is of interest to consider
what D-classes correspond to a certain D-class under the action of i(·). We got some
results about this question. Also, we obtained the following results:

Theorem 1. Each regular D-class, which does not consist of null matrices,
contains a secondary idempotent.

Theorem 2. Each regular D-class contains a primary idempotent.
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ON THE DEFINITION OF n-ARY GROUP
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An n-ary groupoid ⟨G, f⟩ is called n-ary group if it satisfies the generalized
associative law

f(f(an1 ), a2n−1
n+1 ) = f(ai1, f(ai+ni+1 ), a2n−1

i+n+1), (1)

for all i = 1, . . . , n− 1 and uniquely solvable equations

f(ai−1
1 , xi, a

n
i+1) = b
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with respect to variable xi, wherein a1, . . . , ai−1, ai+1, . . . , an, b — any elements of G,
i = 1, . . . , n [1]. When n = 2 obtain the usual group. We are interested in the case
when n > 2.

There are other definitions of n-ary group, equivalent to the above (cf. [2], [3],
[4]).

It is proved that n-ary group ⟨G, f⟩ has (n− 2)-ary operation t, which satisfies
the identities

f(xn−1, x
n−2
1 , t(xn−2

1 )) = xn−1, (2)

f(t(xn−2
1 ), xn−1

1 ) = xn−1, (3)

and (n− 1)-ary operation g, which satisfies the identities

f(xn−1, x
n−2
1 , g(xn−1

1 )) = t(xn−2
1 ), (4)

f(g(xn−1
1 ), xn−1

1 ) = t(xn−2
1 ). (5)

Binary group can be defined by the left (right) unit and the left (right) inverse
element. Generalizing this definition, we obtain

Theorem 1. n-Ary groupoid ⟨G, f⟩ is the n-ary group if and only if it is true
(1) and exist (n−2)-ary operation t, satisfying the identity (3) ((2)) and (n−1)-ary
operation g, satisfying identity (5) ((4)).

Binary group can be defined by the two-sided unit, and two-sided inverse element.
Generalizing this definition, we obtain

Theorem 2. n-Ary groupoid ⟨G, f⟩ is the n-ary group if and only if it is true
(1) and exist (n−2)-ary operation t, satisfying the identities (3), (2) and (n−1)-ary
operation g, satisfying identities (5), (4).

Similar to those given in Theorems 1, 2 definitions of n-ary group can be found
in [5].

In the n-ary group ⟨G, f⟩ for any a ∈ G solution of the equation

f(
(n−1)
a , x) = a

is denoted by ā and called an skew element to the element a. There are properties,
which bind definition of skew element with (n− 2)-ary operation t.

Proposition 1. In the n-ary group is true identities

t(
(n−2)
x ) = x̄, t(

(i)
x, x̄,

(n−i−3)
x ) = x and

t(xn−2
1 ) = f(n−3)(

(n−3)
xn−2, x̄n−2, . . . ,

(n−3)
x1 , x̄1),

where i = 0, 1, . . . , n− 3.
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Analogue of inverse element of group is (n− 1)-ary operation g.
Note that, operations properties are generalization of properties inverse element

of group: (a−1)−1 = a and (a · b)−1 = b−1 · a−1.

Proposition 2. In the n-ary group holds identities

g(xn−2
1 , g(xn−1

1 )) = xn−1,

g(xn−2
1 , f(xn−1, x

n−2
1 , xn)) = f(g(xn−2

1 , xn), xn−2
1 , g(xn−2

1 , xn−1)).

With aid of operations t, g we obtain criteria for n-ary subgroups:

Theorem 3. Subset of H n-ary group ⟨G, f⟩ is n-ary subgroup if and only if
H is closed for action n-ary operation f , (n − 2)-ary operation t and (n − 1)-ary
operation g.

Theorem 4. Subset of H n-ary group ⟨G, f⟩ is n-ary subgroup if and only if for
any a1, . . . , an−1 and b1, . . . , bn−1 of H true f(g(an−1

1 ), bn−1
1 ) ∈ H.

An n-ary subgroup N of n-ary group ⟨G, f⟩ is called invariant if

f(x,
(n−1)

H ) = f(
(i−1)

H , x,
(n−i)
H )

for any x ∈ G and all i = 2, . . . , n.

Theorem 5. n-Ary subgroup N of n-ary group ⟨G, f⟩ is invariant if and only
if for any a1, . . . , an−2 ∈ G and any h ∈ N true f(an−2

1 , h, t(an−2
1 )) ∈ N .

An n-ary subgroup N of n-ary group ⟨G, f⟩ called semi-invariant if

f(x,
(n−1)

H ) = f(
(n−1)

H , x)

for any x ∈ G.

Theorem 6. n-Ary subgroup N of n-ary group ⟨G, f⟩ is a semi-invariant if and
only if if for any a ∈ G and any h1, . . . , hn−1 ∈ N true

f(f(a, hn−1
1 ), hn−1

2 , g(hn−1
2 , a)) ∈ N.
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ON LEXICOGRAPHIC EXTENSIONS OF PARTIALLY
ORDERED GROUPS
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Let G be a partially ordered group, and G+ = {x ∈ G| e 6 x}.
A subgroup M of G is said to be convex if the inequalities a 6 g 6 b imply

g ∈ M for any a, b ∈ M and g ∈ G. Recall that an o-ideal is a convex directed
normal subgroup of partially ordered group.

A partially ordered group G is called a lexicographic extension of a convex normal
subgroup M by the partially ordered group G/M , if the inequality m < a holds for
any elements a ∈ G+ \M and m ∈M . The notion of extension is important in the
study of partially ordered groups.

Let us consider a series of results on lexicographic extensions of partially ordered
groups.

Elements a and b ∈ G+ are said to be almost orthogonal if the inequalities c 6 a, b
imply cn 6 a, b for any c ∈ G and any integer n > 0. A partially ordered group G is
an AO-group if each g ∈ G has a representation g = ab−1 for some almost orthogonal
elements a and b of G+.

Theorem 1. Suppose an AO-group G is the lexicographic extension of its o-ideal
M by the partially ordered group G/M , and H is a convex directed subgroup of G;
then either H ⊆M or M ⊂ H.

In fact, if H *M , then there exists h ∈ H \M , where h = ab−1 for some almost
orthogonal elements a and b of G+. According to Lemma 2 [1], a, b ∈ H. If a ∈ M ,
then b /∈M , otherwise h ∈M .

Now assume that h ∈ H+. If m ∈ M+, then m < h. Hence, M+ ⊂ H. The
inclusion M ⊂ H holds because M is a directed group.
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Theorem 2. Let an AO-group G be the lexicographic extension of its o-ideal M
by the partially ordered group G/M , and let T be the set-theoretic intersection of
all convex directed subgroups H of G, where M ⊂ H, then T is a convex directed
subgroup of G. If t ∈ T \M , then t = ab−1 for some almost orthogonal elements a
and b of G+. Furthermore; there exist integers k > 0 and l > 0 for which either the
inequality a 6 bk or the inequality b 6 al holds.

Really, from Theorem 1 [1] it follows that T is a convex directed subgroup of G.
Since G is an AO-group, then for t ∈ T \M we have a representation t = ab−1

for some almost orthogonal elements a and b of G+. According to Lemma 2 [1],
a, b ∈ T .

If a ∈ M , then b /∈ M , otherwise t ∈ M . According to Theorem 1, this implies
that M ⊂ [b]. Hence, [b] = T and a ∈ [b]. By the definition of [b], there exists an
integer k > 0 for which the inequality a 6 bk holds.

If b ∈ M , then a /∈ M . According to Theorem 1, this implies that M ⊂ [a].
Hence, b ∈ [a], and there exists an integer l > 0 for which the inequality b 6 al

holds.
If a /∈ M and b /∈ M , then [a] = T = [b]. It remains to use the definitions of

subgroups [a] and [b].

A partially ordered group G is an interpolation group if whenever a1, a2, b1, b2 ∈ G
and a1, a2 6 b1, b2, then there exists c ∈ G such that a1, a2 6 c 6 b1, b2. An
interpolation AO-group is called a pl-group.

In a partially ordered group G, for any a ∈ G+ \ {e} there exists the convex
directed subgroup [a], where for each x ∈ [a]+ the inequality x 6 ak holds for some
integer k > 0.

Theorem 3. Suppose a pl-group G is the lexicographic extension of a convex
normal subgroup M , and T is the set-theoretic intersection of all convex directed
subgroups H of G, where H *M ; then the following assertions hold:

1. T is an o-ideal of G;
2. G is the lexicographic extension of T by the partially ordered group G/T ;
3. if T ̸= M , then the set T \M is a chain.

In fact, from Lemma 33 [2] it follows that M is an o-ideal of G.
According to Theorem 2, to prove the statement 1 it is sufficient to show that T

is a normal subgroup of G.
Let us assume that T ̸= M , and t ∈ T+ \M . If x ∈ G, then v = x−1tx /∈M .
By Lemma 2 [3], this implies that T ⊆ [v] = [xtx−1] = x[t]x−1.
Hence, t = xux−1 for some u ∈ [t]. Thus, x−1tx ∈ [t], i.e., x−1T+x ⊂ T for any

x ∈ G.
The inclusion x−1Tx ⊂ T holds because x−1Tx is a directed group.
If a ∈ G+ \ T and t ∈M , then t < a.
If t ∈ T+ \M , then at−1 = xy−1 for some almost orthogonal elements x and y of

G+. This implies that y 6 t2. It follows that y ∈ T . Hence, x /∈ T , otherwise a ∈ T .
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Thus, [x] * T , i.e., T ⊆ [x]. This follows that y ∈ [x]. According to Theorem 4
and Lemma 4 [3], this implies that y = e. Therefore, at−1 = x > e, i.e., t < a. This
means that the assertion 2 holds.

According to Theorem 2, if t ∈ T \M , then t has a representation g = ab−1 for
some almost orthogonal elements a and b of G+, and there exist integers k > 0 and
l > 0 for which either the inequality a 6 bk or the inequality b 6 al holds.

According to Theorem 4 and Lemma 4 [3], this implies that either a = e or b = e.
This means that the assertion 3 holds.
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FAREY FRACTIONS AND PERMUTATIONS
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Let α ∈ (0; 1) be an irrational number. Let πα,n be a permutation that orders
fractional parts {α}, {2α}, . . . , {nα}, i.e.

0 < {πα,n(1)α} < {πα,n(2)α} < . . . < {πα,n(n)α} < 1.

Permutations πα,n are studied in [1].
The set of irreducible rational fractions a

b
with denominators 0 < b ≤ n, that

belongs to [0; 1] and arranged in ascending order is called Farey sequence of level n.
Denote by F n a tiling of [0; 1] generated by the points of Farey sequence of level n.
Denote by F n

i intervals of this tiling.
It is proved the following theorem.

Theorem 1. Permutations πα,n and πβ,n coincide if and only if α, β ∈ F n
i for

some i.
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Corollary 1. Let π(n) be a number of different permutations πα,n for some n.
Then

π(n) = 1 +
n∑
k=2

φ(k),

where φ(k) is the Euler function.

Also it is proved the following result.

Theorem 2. Permutation πα,n uniquely determines permutations πα,m with n <
m < πα,n(1) + πα,n(n) but does not uniquely determines permutation πα,m with m =
πα,n(1) + πα,n(n).
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ON SOME CONDITIONS OF FINITENESS OF
COLENGTH OF LEIBNIZ ALGEBRAS VARIETY

A. V. Shvecova (Ulyanovsk)
shvecovaav@rambler.ru

Let K – a field with zero characteristic. Leibniz algebra above field K is defined
as nonassociative algebra with bilinear product, in which Leibniz identity

(xy)z ≡ (xz)y + x(yz)

takes place. We shall agree that brackets in left-normed elements we will omit,
i.e., for example, x1x2x3 . . . xn = (((x1x2)x3) . . . xn). Put in designation Y for the
operator of multiplication on right on the element y, it is conveniently for record of
the element of the form xy . . . y︸ ︷︷ ︸

n

= xY n, as record, for example, xy2 will incorrect,

as it means x(yy), but we have (xy)y.
Design by V Leibniz algebras variety. Let Pn(V) be a space, generated by

multilinear elements with degree n from free generators x1, . . . , xn in relatively free
algebra variety V.We consider the space Pn(V) asKSn−module, giving operation of
symmetric group as usually. Decompose Pn(V) into the sum of irreducible modules
и write out the character in the form of the sum of irreducible characters

χ(Pn(V)) =
∑
λ⊢n

mλχλ,
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where λ ⊢ n – is partition of the number n, χλ – character, а mλ – multiplicity of
corresponding λ irreducible module.

Colength of the variety V is defined on the formula ln(V) =
∑

λ⊢nmλ. If it
exists such constant C, not dependent from n, that for any n inequality ln(V) ≤ C
is executed, then the colength of the variety V is called finite. The variety V has
almost finite colength, if any its own subvariety has finite colength and colength of
the variety is not finite.

Remind, that ÑsA– is Leibniz algebras variety, which is defined by the identity

(x1x2)(x3x4) . . . (x2s+1x2s+2) ≡ 0. (1)

In the work [1] was received the result about one necessary condition of finiteness
Leibniz algebras variety colength. In particular, it is proved, that any variety V with
finite colength is a subvariety of the variety NsA, for some suitable natural number
s, i.e. in the variety V identity (1) takes place.

On the other hand in the paper [2] it was found one enough condition of finiteness
of Leibniz algebras variety. Formulate it in the form of the theorem.

Theorem 1. . Let V – a subvariety of the variety ÑsA, in which for some
natural numbers k,m, k 6 m, and α1, . . . , αk ∈ K the next identity takes place

xY kzY m−k ≡
k∑
i=1

αixY
k−izY m−k+i.

Then variety V has finite colength.

Let us formulate a new result which was received in this year.

Theorem 2. Let the Leibniz algebras variety V has finite colength, then the next
identity takes place in it

xY kzY m−k−2 ≡
k∑
i=1

αixY
k−izY m−2−k+i.

So, for Leibniz algebras varieties is received necessary and enough condition for
finiteness of the colength in the terms of identical relations:

Theorem 3. Leibniz algebras variety V has finite colength in only case when
(1) and for some natural numbers k,m, k 6 m, and α1, . . . , αk ∈ K the identity of
the form

xY kzY m−k−2 ≡
k∑
i=1

αixY
k−izY m−2−k+i

are the identities of the variety V.
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ON THE NUMBER OF ZEROS OF SOME ANALYTIC
FUNCTIONS
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Let s = σ + it be a complex variable, α, 0 < α ≤ 1, be a fixed parameter,
and a = {am : m ∈ N} and b = {bm : m ∈ N0 = N ∪ {0}} be the two periodic
sequences of complex numbers with minimal periods k ∈ N and l ∈ N, respectively.
We consider value-distribution of zeta-functions with periodic coefficients which are
generalizations of the Riemann zeta-function and the Hurwitz zeta-function. The
periodic zeta-function ζ(s; a) is defined, for σ > 1, by the Dirichlet series

ζ(s; a) =
∞∑
m=1

am
ms

.

The periodicity of the sequence of a implies, for σ > 1, the equality

ζ(s; a) =
1

ks

k∑
m=1

amζ
(
s, m

k

)
,

where ζ(s, β), 0 < β ≤ 1, is the classical Hurwitz zeta-function. Therefore, the latter
equality gives for the function ζ(s; a) analytic continuation to the whole complex
plane, except for a possible simple pole at the point s = 1. The periodic Hurwitz
zeta-function ζ(s, α; b) is given, for σ > 1, by the Dirichlet series

ζ(a, α, b) =
∞∑
m=0

bm
(m+ α)s

.

Similarly as in the case of ζ(s; a) by the periodicity of the sequence b, we have that,
for σ > 1,

ζ(s, α; b) =
1

ls

l−1∑
m=0

bmζ
(
s, m+α

l

)
.
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Thus the function ζ(s, α; b) also has analytic continuation to the whole complex
plane, except for a possible simple pole at the point s = 1.

The zero distribution of the function ζ(s; a) was considered in [3], of the function
ζ(s, α; b) in [1]. In the report, we discuss the universality and zero distribution of
some combinations of the functions ζ(s; a) and ζ(s, α; b).

Let D =
{
s ∈ C : 1

2
< σ < 1

}
. Denote by H(D) the space of analytic functions

on D endowed with the topology of uniform convergence on compacta. We say that
the operator F : H2(D)→ H(D) belongs to the class Lip(β1, β2), β1, β2 > 0, if the
following hypotheses are satisfied:
1◦ For each polynomial p = p(s), and any compact subset K ⊂ D with connected
complement, there exists an element (g1, g2) ∈ F−1{p} ⊂ H2(D) such that g1(s) ̸= 0
on K;
2◦ For any compact subset K ⊂ D with connected complement, there exist a positive
constant c, and compact subsets K1, K2 of D with connected complements such that

sup
s∈K
|F (g11(s), g12(s))− F (g21(s), g22(s))| ≤ c sup

1≤j≤2
sup
s∈Kj

|g1j(s)− g2j(s)|βj

for all (gr1, gr2) ∈ H2(D), r = 1, 2.
The joint universality of the functions ζ(s; a) and ζ(s, α; b) has been obtained in

[2]. From this, we obtain the following assertion.

Theorem 1. Suppose that the sequence a is multiplicative, for each prime p,

∞∑
m=1

|apm|
p

m
2

≤ c < 1,

and that the number α is transcendental. Then, for every σ1, σ2, 1
2
< σ1 < σ2 < 1,

there exists a constant c = c(σ1, σ2, α; a, b) > 0 such that, for sufficiently large T ,
the function

c1ζ(s; a) + c2ζ(s, α; b), c1, c2 ∈ C \ {0},

has more than cT zeros in the rectangle {s ∈ C : σ1 < σ < σ2, 0 < t < T}.

Our main result is based on the universality theorem for the function F (ζ(s; a),
ζ(s, α; b)) with F ∈ Lip(β1, β2).

Theorem 2. Suppose that the sequence a and the number α are as in Theorem 1
and that the operator F ∈ Lip(β1, β2). Let K ⊂ D be a compact subset with connected
complement, and f(s) be a continuous function on K which is analytic in the interior
of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|F (ζ(s+ iτ ; a), ζ(s+ iτ, α; b))− f(s)| < ε

}
> 0.

Theorem 2 implies an analogue of Theorem 1.
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Theorem 3. Suppose that the sequence a and the number α are as in Theorem 1
and that the operator F ∈ Lip(β1, β2). Then, for every σ1, σ2, 1

2
< σ1 < σ2 <

1, there exists a constant c = c(σ1, σ2, α; a, b, F ) > 0 such that, for sufficiently
large T , the function F (ζ(s; a), ζ(s, α; b)) has more than cT zeros in the rectangle
{s ∈ C : σ1 < σ < σ2, 0 < t < T}.
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ABOUT GROWTH OF VARIETY OF LEIBNIZ
ALGEBRAS, WICH IS CONNECTED WITH INFINITELY
DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF

THE HEISENBERG ALGEBRA1

Т. V. Skoraya (Ulyanovsk)
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The characteristic of basic field Φ is equal zero. All undefined concepts can be
found in the monograph [1]. Generalization of the concept of Lie algebra is a Leibniz
algebra, which is determined by the identity (xy)z ≡ (xz)y + x(yz) and, probably,
first appeared in [2].

Let F (X,V) be a relatively free algebra of countable set of free generators X of
some variety V. In 1949 A.I.Maltsev proved that in the case when the basic field has
zero characteristic, every identity is equivalent to the system of multilinear identities.
Therefore, in this case, all the information about the variety contained in the space
of multilinear elements of degree n from the variables x1, x2, . . . xn,, the so-called
multilinear components of relatively free algebra of variety and denoted Pn(V).
The growth of variety is the asymptotic behavior of the sequence of dimensions
cn(V) = dimPn(V). In the case of the existence of such numbers C1 > 0, C2 > 0,
d1 > 1, d2 > 1, that for all numbers n hold inequalities C1d

n
1 < cn(V) < C2d

n
2 , then

1RFBR № 14-01-31084
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we say that the growth of variety is exponential. If the upper and lower limits of
this sequence are the same, then their values are called the exponent of variety.

Let T = Φ[t] is ring of polynomials from the variable t. Consider the three-
dimensional Heisenberg algebra H with basis {a, b, c} and multiplying ba = −ab =
c, product of the remaining basis elements equal to zero. Transform the ring of
polynomials T in the right module of algebra H, in which the basic elements of
algebra H act on the polynomial f from T follows: fa = f ′, fb = tf, fc = f, where
f ′ is partial derivative of a polynomial f in the variable t. Consider the direct sum
of vector spaces H and T with multiplication: (x + f)(y + g) = xy + fy, where
x, y are from H; f, g are from T . Thus constructed algebras generates the variety
Ṽ3 of Leibniz algebras. This variety is an analog to well known varieties V3 of Lie
algebras. Earlier in article [3] for a variety Ṽ3 has been proven that it has almost
polynomial growth, in article [4] have been identified its multiplicity and colength,
and in article [5] it was proved that it has integer exponent.

Theorem 1. The exponent of variety Ṽ3 of Leibniz algebras is equal 3.
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Consider the following function for the fixed natural p > 1

p(t) =
∑

tνp
−ν−1, tν ∈ A(p)

for the any natural number t =
h−1∑
ν=0

tνp
ν ≥ 0 — is he van der Corput—Hammersli

where for the arbitrary T set

A(T ) = {0, 1, ..., T−1} .

For the p = 2 this function is considered the van der Corput in [12] and K. Roth
used this function in his seminal work on the square deviation[15].

In 1960 Hemmersli for construction of multidimensional quadrature formulas
introduced multidimensional grid, which is now called Hemmersli grids:

X(N) =
{(
p1(n), ..., ps(n),

n

N

)
| n = 0, 1, ..., N − 1

}
,

where p1, . . . , ps — is different pairwise coprime natural numbers greater than 1 and
pj(n) — the van der Corput—Hammersli functions for p = pj (j = 1, 2, . . . , s).

Known to (see [13], [14], [9]), if p1, ..., ps — is pairwise relatively prime, then
Hemmersli grids is uniformly distributed and deviation D(X(N)) grid is of the
order 2

D(X(N)) = O (lnsN) . (1)

In [8] (стр. 174) introduced the definition of the uniformly distributed modulo
1.

Let s ≥ 1 — a fixed natural number, γ1, ..., γs — arbitrary positive numbers not
greater than 1, и f1(x), ... , fs(x) — it functions defined for natural values of x. Let
NT (γ1, ..., γs) number of solutions system of inequalities

{f1(x)} < γ1

. . . . . . . . . . . . . . . x = 1, 2, ..., T.

{fs(x)} < γs

2Deviation D(X) of an arbitrary grid X = {x⃗k|1 6 k 6 N} s the quantity

D(X) = sup
06γ1,...,γs61

|D(X, γ⃗)|, D(X, γ⃗) = N(γ⃗)−Nγ1 . . . γs,

where N(γ⃗) — number of grid points X, included in area Π(γ⃗) = [0; γ1)× . . .× [0; γs), D(X, γ⃗) —
local deviation grid X.
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Definition 1. System of the function is uniformly distributed in s-dimen-
sional unit cube, if

lim
T→∞

1

T
NT (γ1, ..., γs) = γ1...γs,

or, is the same,

NT (γ1, ..., γs) = γ1...γsT + o(T )

for the any 0 6 γ1, ..., γs 6 1.

Of evaluation for (1) follows that the system functions p1(t), ..., ps(t) is uniformly
distributed modulo 1.

Goal of this article - to prove the following theorem

Theorem 1. Van der Corput–Hammersli functions p1(t), ..., ps(t) is a strong
uniform distribution, that is, for any set of non-negative integers (n1, ..., ns) Van
der Corput–Hammersli functions p1(t + n1), ... , ps(t + ns) is uniformly distributed
modulo 1.

For the proof we need information about the estimates of the deviation of the
modified Hemmersli — Roth grids, submitted by Nikolay Dobrovolsky in 1983 [2]
or effective proof of Roth’s theorem on quadratic dispersion[16]. Various aspects of
the theory of modified Hemmersli — Roth grids considered in [1] — [7]. Various
generalizations of Roth’s theorem on quadratic dispersion are devoted [10] — [11].

For a fixed natural p > 1 , natural h ≥ 1, P = ph фan der Corput— Hemmersli
function x(m) = x(h)(m) periodised by modulo P on the set of integers is given by
equalitiesv

x(m) =


h−1∑
ν=0

mνp
−ν−1 при m ∈ A(P ), m =

h−1∑
ν=0

mνp
ν , mν ∈ A(p)

x
(
P
{
m
P

})
при m /∈ A(P ).

Let p1, . . . , ps — various pairwise coprime natural numbers greater than 1. ДFor
an arbitrary natural N ge3 define the quantities

hj = [lnN/ ln pj] + 1, Pj = p
hj
j (j = 1, . . . , s);

M = P1 . . . Ps; Mj = M/Pj (j = 1, . . . , s).
(2)

Then the relations

N < Pj 6 Npj, (Mj, Pj) = 1 (j = 1, . . . , s); N s < M 6 N sp1 . . . ps (3)

Through xj(n) denote the function x(n) with p = pj, h = hj, P = Pj (j = 1, . . . , s).
Let t⃗ = (t1, . . . , ts) — arbitrary integer vector. For any integer n with 0 6 n 6 N −1
assume

x⃗
(
n, t⃗
)

=
(
x1(n+ t1), . . . , xs(n+ ts),

n

N

)
(4)
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Definition 2. Modified Hemmersli — Roth grid called

XR
(
N, t⃗

)
=
{
x⃗
(
n, t⃗
)
|n = 0, . . . , N − 1

}
(5)

of N nodes.

Periodicity of xj(n) with period Pj follows that grid XR left(N, vect right)
depends periodically of tj with period Pj (j = 1, ldots, s). This implies that for
a given N there are exactly M various modified Hemmersli — Roth grids, that is
about N s different grids.

Arbitrary estimate for the deviation of the modified Hammer to li — Roth grid
received in cite d35.
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In this work we considered the matrix decomposition of the cubic irrational α,
satisfying the equation

x3 − 4x2 − 5x− 1 = 0.

For decomposition of the matrix(
α
1

)
=

∞∏
k=0

(
310941 · k + 155427 156744 · k + 78333
61578 · k + 30882 31041 · k + 15564

)
is constructed an algorithm of transition to regular continued fraction.

In figure 1 is given the text of the program of calculation of the incomplete
private reduced cubic irrationalities α(p) on Lagrange’s algorithm.

1Work is performed on a grant RFBR №11-01-00571a



184 XII International conference

Figure 1

Figure 2.
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Calculations cfki(100) gives values 592 incomplete private, and cfki(200)
already — 1194 values. As results are presented in the form of the matrix, containing
40 elements in every line, the last elements of the last line can be zero. We will give
distribution of values incomplete private taking into account the given zero values
which aren’t incomplete private.

This distribution is calculated by means of the program in figure 3.

Figure 3.

We will provide necessary data on matrix decomposition.
Let α is the given reduced cubic irrationality, that is α(1) = α > 1, and the

interfaced algebraic irrationalities satisfy to a ratio −1 < α(3) < α(2) < 0.
The concept of the given reduced cubic irrationality is generalization of the given

quadratic irrationality.
It is easy to see that the positive root α the equations

x3 − 4x2 − 5x− 1 = 0

is the given reduced cubic irrationality.
Really, for a polynomial f(x) = x3 − 4x2 − 5x− 1 we have:

f(−1) = f(0) = f(5) = −1, f(6) = 41, f

(
−1

2

)
=

3

8
,

therefore α = α(1) > 5, −1 < α(3) < −1
2
, −1

2
< α(2) < 0.

In works [2] and [3] are considered matrix decomposition of algebraic
irrationalities. In particular, for reduced cubic irrationality α, satisfying the equation

f(t) = t3 + at2 + bt+ c, f(α) = 0

is given matrix decomposition(
α
1

)
=

∞∏
k=0

((
t −at2 − 2bt− 3c
1 3t2 + 2at+ b

)(
3k + 2 0

0 3k + 1

)
·
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·
(

3t2 + 2at+ b −at2 − 2bt− 3c
1 t

)(
ab− 9c 2b2 − 6ac
2a2 − 6b ab− 9c

))
(1)

also it is claimed that it meets at for t, which the difference |t− α| is small.
In the program in figure 4 is realized the algorithm of transition from matrix

decomposition α(5) to usual continuous fraction.

Figure 4.

General determination of convergence of matrix decomposition are the following.

Definition 1. They say that matrix decomposition
∞∏
k=0

(
ak bk
ck dk

)
meets to number α, if for matrixes

Mn =
n∏
k=0

(
ak bk
ck dk

)
=

(
An Bn

Cn Dn

)
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the ratio is carried out
lim
n→∞

An
Cn

= lim
n→∞

Bn

Dn

= α.

In this case it is written (
α
1

)
=

∞∏
k=0

(
ak bk
ck dk

)
.
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THE RESIDUAL π-FINITENESS OF CERTAIN FREE
CONSTRUCTIONS OF GROUPS

E. V. Sokolov (Ivanovo, Russia)
ev-sokolov@yandex.ru

Let C be a class of groups. Recall that, in accordance with the common definition,
a group X is said to be residually a C-group if, for every nonidentity element x ∈ X,
there exists a homomorphism ρ of X onto a group of C (or, briefly, a C-group) such
that xρ ̸= 1. Let us recall also that a periodic group is said to be a π-group, where
π is a set of primes, if all prime divisors of the orders of its elements belong to π.

Let P be the free product of finitely generated nilpotent groups A and B with fi-
nite subgroups C 6 A and D 6 B amalgamated according to an isomorphism
φ : C → D. Let also E be the HNN extension of a finitely generated nilpotent
group G with finite associated subgroups H 6 G and K 6 G and an associated
isomorphism ψ : H → K. As is well known, the groups P and E are residually
finite. Therefore the natural question arises which are conditions for P and E to be
residually C-groups, where C is some subclass of the class of all finite groups.
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The criteria for the groups P and E to be residually p-groups were proved
by D. N. Azarov [1] and D. I. Moldavanskii [2], respectively. Using these results,
the author obtains their generalizations on the case when C is a certain subclass
of the class of all finite π-groups, where π contains all prime divisors of the periodic
parts of either the free factors A, B or the base group G (see Theorems 1 and 2
below). Before to formulate these statements, we introduce a number of definitions
and recall some facts on nilpotent groups.

As is well known (cf., e. g., [3, § 4]), the set of all elements of finite order
of a locally nilpotent group N forms a characteristic subgroup which is called
the periodic part of N and is denoted by τ(N). If N is finitely generated and hence
nilpotent, then τ(N) is finite and, by Burnside-Wielandt’s theorem, is decomposed
into the direct product of its Sylow’s subgroups.

Recall that a normal series of a group is said to be a chief series if it has no trivial
factors and no refinements to longer normal series. Since every finite p-group is
nilpotent (cf., e. g., [3, Lemma 1.4]), a normal series of such a group is chief if
and only if all its factors are of order p.

Let further θ = {p1, . . . , pm} be the set of all prime divisors of the orders
of the groups τ(A) and τ(B), and let σ = {q1, . . . , qn} be the set of all prime
divisors of the order of the group τ(G). Let also Ak 6 τ(A) and Bk 6 τ(B) be
the Sylow’s subgroups of the groups τ(A) and τ(B) corresponding to the number pk,
k ∈ {1, . . . ,m}, and let Gℓ 6 τ(G) be the Sylow’s subgroup of the group τ(G)
corresponding to the number qℓ, ℓ ∈ {1, . . . , n}. Since pk does not necessarily divide
the orders of both the groups τ(A) and τ(B), then one of the subgroups Ak and Bk

can be equal to 1.
If p is a prime and π is a set of primes, then we denote by Fp the class of all

finite p-groups, by Fπ the class of all finite π-groups, by FN π the class of all finite
nilpotent π-groups, and by Fp · FN π the class of finite solvable groups containing
any possible extension of an Fp-group by an FN π-group.

Theorem 1. The following statements are equivalent.
1. For every k ∈ {1, . . . ,m}, there exist chief series Rk and Sk of the groups Ak

and Bk, respectively, satisfying the following two conditions:

(a) the series Rk and Sk are (C,D, φ)-compatible, i. e. φ maps the set of
the intersections of the terms of Rk with the subgroup C onto the set
of the intersections of the terms of Sk with the subgroup D;

(b) the terms of Rk and Sk are normal in A and B, respectively.

2. There exists a homomorphism of P onto an FN θ-group which is injective
on τ(A) and τ(B).

3. P is residually an Fp · FN θ-group for every prime p.

Theorem 2. The following statements are equivalent.
1. For every ℓ ∈ {1, . . . , n}, there exists a chief series

1 = Gℓ,0 6 Gℓ,1 6 · · · 6 Gℓ,rℓ−1 6 Gℓ,rℓ = Gℓ, (Tℓ)
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of the group Gℓ satisfying the following conditions:

(a) the series Tℓ is (H,K,ψ)-compatible, i. e. (H ∩Gℓ,i)ψ = K ∩Gℓ,i for any
i ∈ {0, 1, . . . , rℓ};

(b) for every i ∈ {0, 1, . . . , rℓ − 1} and for every h ∈ H ∩Gℓ,i+1, the elements
h and hψ are congruent modulo Gℓ,i;

(c) the terms of Tℓ are normal in G.

2. There exists a homomorphism of E onto an FN σ-group which is injective
on τ(G).

3. E is residually an Fp · FN σ-group for every prime p.

As is readily seen, all numbers of the sets θ and σ necessarily occur among
the prime divisors of all possible finite homomorphic images of P and E, respectively.
The first statements of Theorems 1 and 2 serve as sufficient conditions for these
groups to be residually an Fθ-group and an Fσ-group, respectively. However, there
are the examples showing that these conditions are not necessary. Therefore the follo-
wing problem can be formulated.

Problem. Which conditions are necessary and sufficient for P and E to be
residually an Fθ-group and an Fσ-group, respectively?
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An algebra A over a field is called Z2-graded, if it is a direct sum of subspaces
A0 and A1 such that AiAj ⊆ Ai+j for all i, j ∈ Z2. Obviously, A0 is a subalgebra of
A. It is well known that an associative Z2-graded algebra A is a PI-algebra if its
even component A0 is PI-algebra (see, for instance, [1]).

We study Z2-graded associative algebras with commutative even components
and prove that any such algebra satisfies both the identity∑

σ

[[xσ(1), y1], [xσ(2), y2]], xσ(3)] = 0 (1)

where σ belongs to the set of all even permutations of {1, 2, 3}, and [x, y] is the
commutator xy − yx of elements x and y, and the identity

[[x, y]2, x] = 0. (2)

Let M be the ideal of all non-graded identities which are satisfied by any Z2-
graded associative algebra with a commutative even component. If the characteristic
of the base field is not equal to 2 then M does not contain identities of degree 4. In
the case of characteristic zero any identity of degree 5 from M is a consequence of
the identities (1) and (2).
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In the papers [1] and [2], the group of invertible elements of a free product of
algebras over a skewfield was studied. The complete description of such a group was
given in the paper [2], where it was shown that this group is a free product of some
groups. The important thing is that the later result provides negative answers to
the following conjectures:
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1. The elementary subgroup En(R) (i.e., the subgroup generated by all transvec-
tions) of a general linear group GLn(R) is always normal in GLn(R).

2. Every automorphism of the group GLn(R) (n > 3) is standard, i.e., expressed
in terms of certain automorphisms and anti-automorphisms of the matrix ring
Mn(R).

We will describe a counterexample to similar conjectures for unitary linear gro-
ups. The main result is the theorem, in which the unitary linear group over a special
ring is decomposed into a non-trivial free product such that one of the free factors
contains the elementary unitary subgroup (i.e., the subgroup generated by special
unitary transvections).
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This work continues the author’s investigations published in [1], where the defini-
tions of the most important terms used further can be found.

We assume until the end of the paper that K is a root class of groups and G
is the free product of groups A and B with normal subgroups H 6 A and K 6 B
amalgamated according to an isomorphism φ : H → K. Since the subgroup H is
normal in G, then the restrictions on this subgroup of all inner automorphisms of G
are automorphisms of H and form a subgroup AutG(H) of the group AutH.

Let us formulate the results of this paper.

Theorem 1. Let A and B be K-groups. If A/H ∈ K, B/K ∈ K, AutG(H) ∈ K,
then there is a homomorphism of G onto a K-group which is injective on the subgro-
ups A, B and, in particular, G is residually a K-group.
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From now on and until the end of the paper, let the class K be homomorphically
closed. With this assumption, we get the following criterion from Theorem 1.

Corollary 1. Let A,B ∈ K. Then the following statements are equivalent
and any of them implies that G is residually a K-group.

1. There is a homomorphism of G onto a K-group which is injective on the subgro-
ups A and B.

2. The group AutG(H) is a K-group.

We note that the free factors A and B do not necessarily belong to K in all
statements formulated below excepting Corollary 4.

For any group X, let us denote by K∗(X) the family of subgroups {Y � X |
X/Y ∈ K}. Recall also that subgroups R 6 A and S 6 B are said to be (H,K,φ)-
compatible if (H ∩R)φ = K ∩ S.

Theorem 2. Let H ̸= A, and let K ̸= B. Let also {(Rλ, Sλ)}λ∈Λ be the family
of all pairs of (H,K,φ)-compatible subgroups of the families K∗(A) and K∗(B),
respectively. If AutG(H) is a finite group, then G is residually a K-group if and only
if the following conditions hold: AutG(H) ∈ K,

∩
λ∈ΛRλ =

∩
λ∈Λ Sλ = 1, H is

K-separable in A, K is K-separable in B.

Corollary 2. Let H and K be proper central subgroups of A and B, respective-
ly, and let the family {(Rλ, Sλ)}λ∈Λ be defined as in Theorem 2. G is residually
a K-group if and only if the following conditions hold:

∩
λ∈ΛRλ =

∩
λ∈Λ Sλ = 1, H

is K-separable in A, K is K-separable in B.

Theorem 3. Let A and B be residually K-groups, and let H and K be finite
subgroups. Then the following statements are equivalent.

1. G is residually a K-group.
2. There is a homomorphism of G onto a K-group which is injective on the sub-

group H.
3. The group AutG(H) is a K-group.

We note, that Theorem 3 generalizes and extends Corollary 2 from [2] which
serves as a criterion of the residual p-finiteness of a free product of two finite p-groups
with normal amalgamated subgroups.

Corollary 3. Let A and B be residually K-groups, and let H and K be finite
subgroups. If at least one of the subgroups H and K lies in the center of the correspon-
ding free factor or the group AutG(H) is Abelian, then G is residually a K-group.

Theorem 4. Let A and B be residually K-groups. And let H and K be cyclic,
or let K be central in B.

1. If H ̸= A, K ̸= B and G is residually a K-group, then H is K-separable in A,
K is K-separable in B.

2. Let H be K-separable in A, let K be K-separable in B, and let, for any subgroup
M ∈ K∗(K), exist a subgroup N ∈ K∗(B) such that N∩K = M . Then G is residually
a K-group.
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Corollary 4. Let A be residually a K-group, let B be a K-group, let H ̸= A,
and let K ̸= B. Let also H and K be cyclic, or let K be central in B. G is residually
a K-group if and only if H is K-separable in A.

Corollary 5. Let A be residually a K-group, let B be a finitely generated
nilpotent residually K-group, let H ̸= A, and let K ̸= B. Let also H and K be
cyclic, or let K be central in B. G is residually a K-group if and only if H is
K-separable in A, K is K-separable in B.

A group is said to be of finite Hirsch-Zaicev rank r if it possesses a finite
subnormal series whose factors are either infinite cyclic or periodic and if the number
of the infinite cyclic factors is exactly r.

Theorem 5. Let A and B be residually torsion-free K-groups, and let H and K
be of finite Hirsch-Zaicev rank. Then the following statements are equivalent and any
of them implies that G is residually a K-group.

1. The group AutG(H) is a K-group.
2. There is a homomorphism of G onto a K-group which is injective on the sub-

group H.

Corollary 6. Let A and B be residually torsion-free K-groups, and let H
and K be of finite Hirsch-Zaicev rank. If at least one of the subgroups H and K
lies in the center of the corresponding free factor or the group AutG(H) is Abelian,
then G is residually a K-group.
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Universal algebra A is a Hamiltonian algebra if every subuniverse of A is the
block of some congruence of the algebra A. The Hamilton property was introduced
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by B. Csákány [1] for universal algebras as natural generalization of Hamiltonian
group.

Universal algebra is an algebra with operators if it has an additional set of unary
operations acting as endomorphisms with respect to basic operations. In other words,
the operators are permutable with basic operations.

An algebra with operators is ternary if it has exactly one basic operation and
this operation is ternary.

Denote by Ct
h (h > 0, t > 0) the unar ⟨a|f t(a) = fh+t(a)⟩.

Proposition 1. Let ⟨A,Ω⟩ be an arbitrary algebra with an operator f ∈ Ω. If
⟨A, f⟩ ∼= Ct

1 for some t ∈ N ∪ {∞} or ⟨A, f⟩ ∼= C0
n for some n ∈ N then algebra

⟨A,Ω⟩ is Hamiltonian.

An algebra with one ternary operation p that satisfies the Mal’tsev identities
p(x, y, y) = p(y, y, x) = x and has one unary operation permutable with p is an
unar with Mal’tsev operation [2]. In [2] on any unar ⟨A, f⟩ a ternary operation p is
defined so that the algebra ⟨A, p, f⟩ becomes an unar with Mal’tsev operation. The
operation p is defined as follows.

Let ⟨A, f⟩ be an arbitrary unar and x, y ∈ A. By fn(x) we denote the result
of f applied n times to an element x. In particular, f 0(x) = x. Assume Mx,y =
{n ∈ N ∪ {0} | fn(x) = fn(y)}, and also k(x, y) = min Mx,y, if Mx,y ̸= ∅ and
k(x, y) =∞, if Mx,y = ∅. Let’s assume further

p(x, y, z)
def
=

{
z, if k(x, y) 6 k(y, z)
x, if k(x, y) > k(y, z).

(1)

Theorem 1. Let ⟨A, p, f⟩ be an unar with Mal’tsev operation p defined by the
rule (1). The algebra ⟨A, p, f⟩ is Hamiltonian if and only if either ⟨A, f⟩ ∼= Ct

1 for
some t ∈ N ∪ {∞}, or ⟨A, f⟩ ∼= C0

1 + C0
1 , or ⟨A, f⟩ ∼= C0

n for some n ∈ N .

In [4] we define a ternary operation w on an arbitrary unar ⟨A, f⟩ which permutes
with f and satisfies the identities w(x, x, y) = x, w(y, x, x) = x, w(x, y, x) = y. We
also define symmetric Mal’tsev operation (minority function) in [3] and ternary near-
unanimity operation in [4] on ⟨A, f⟩. So we get three classes of ternary algebras with
one operator.

For each of these classes we obtain necessary and sufficient conditions for their
Hamiltonity. These conditions are similar to that given in the theorem 1.
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ON JACK’S CONNECTION COEFFICIENTS AND THEIR
COMPUTATION
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This paper deals with the computation of Jack’s connection coefficients that we
define as a generalization of both the connection coefficients of the class algebra of the
symmetric group and the connection coefficients of the double coset algebra. Using
orthogonality properties of Jack symmetric functions and the Laplace Beltrami
operator we yield explicit formulas for some of these coefficient that generalize a
classical result of Dénes for the number of minimal factorizations of a long cycle
into an ordered product of transpositions.

For any integer n we note Sn the symmetric group on n elements and λ =
(λ1, λ2, . . . , λp) ⊢ n an integer partition of |λ| = n with ℓ(λ) = p parts sorted in
decreasing order. Ifmi(λ) is the number of parts of λ that are equal to i, then we may
write λ as [1m1(λ) 2m2(λ) . . .] and define Autλ =

∏
imi(λ)! and zλ =

∏
i i
mi(λ)mi(λ)!.

A partition λ is usually represented as a Young diagram of |λ| boxes arranged in
ℓ(λ) lines so that the i-th line contains λi boxes. Given a box s in the diagram of
λ, let l′(s), l(s), a(s), a′(s) be the number of boxes to the north, south, east, west
of s respectively. These statistics are called co-leglength, leglength, armlength,
co-armlength respectively. We note for some parameter α:

hλ(α) =
∏
s∈λ

(αa(s) + l(s) + 1), h′λ(α) =
∏
s∈λ

(α(1 + a(s)) + l(s)). (1)

Finally, λ′ is the conjugate of partition λ and for two integer partitions λ and µ, we
note λ > µ if for all i ≥ 1, λ1 + λ2 + . . .+ λi > µ1 + µ2 + . . .+ µi.

Let Λ be the ring of symmetric functions, mλ(x) the monomial symmetric func-
tion indexed by λ on indeterminate x, pλ(x) and sλ(x) the power sum and Schur
symmetric function respectively. Whenever the indeterminate is not relevant we
shall simply write mλ, pλ and sλ. We note ⟨· , ·⟩ the scalar product on Λ such
that the power sum symmetric functions verify ⟨pλ, pµ⟩ = zλδλµ where δλµ is the
Kronecker delta. The Schur symmetric functions are characterized by (a) the fact
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they form an orthogonal basis for ⟨· , ·⟩ (they form even an orthonormal basis)
and (b) the transition matrix between Schur and monomial symmetric functions
is upper unitriangular. Using an additional parameter α one can define the Jack’s
symmetric functions Jαλ as the set of symmetric function characterized by:

(a’) The Jαλ are orthogonal for the alternative scalar product ⟨· , ·⟩α that verifies:

⟨pλ, pµ⟩α = αℓ(λ)zλδλµ, (2)

(b’) The transition matrix between the Jαλ and the monomial symmetric functions
is upper triangular and the coefficient in mλ of the expansion of Jαλ in the
monomial basis is equal to hλ(α). Formally it means that the Jαλ may be
expressed with the help of some scalar coefficients uαλµ as:

Jαλ = hλ(α)mλ +
∑
µ<λ

uαλµmµ, (3)

According to the above definition, J1
λ is the normalized Schur symmetric function

hλ(1)sλ and J2
λ is the zonal polynomial Zλ. Let θλµ(α) denote the coefficient of pµ in

the expansion of Jαλ in the power sum basis:

Jαλ =
∑
µ

θλµ(α)pµ (4)

In the case α = 1, the θλµ(1)’s are equal to the irreducible characters of the symmetric
group (up to a normalization factor). In the general case, with proper normalization,
these coefficients are called the Jack’s characters (see [2]). This paper is devoted
to the computation of the numbers aλ1,λ2,...,λr for integer r greater or equal to 1 and
λi ⊢ n for 1 ≤ i ≤ r that we define by:

aλ1,λ2,...,λr(α) =
∑
β⊢n

1

hβ(α)h′β(α)

∏
i

θβ
λi

(α) (5)

We name these numbers the Jack’s connection coefficients. In some cases we
may be interested only in the number of parts of the λi. We note:

an,p1,p2,...,pr(α) =
∑

λi⊢n, ℓ(λi)=pi

aλ1,λ2,...,λr(α). (6)

We pay a particular attention to the case when most of the λi are equal to ρ =
[1n−22]. If we note arλ(α) = aλ,ρ,...,ρ(α) (with ρ appearing r times, r ≥ 0), i.e:

arλ(α) =
∑
β⊢|λ|

1

hβ(α)h′β(α)
θβλ(α)

(
θβρ (α)

)r
. (7)

We show the following result.



Algebra and number theory: modern problems and applications 197

Theorem 1. Let arλ(α) be defined as above. Then for any integer partition λ we
have arλ(α) = 0 for r < |λ| − ℓ(λ) and

a
|λ|−ℓ(λ)
λ (α) =

(|λ| − ℓ(λ))!

αℓ(λ)Autλ
∏

i λi!

∏
i

λλi−2
i (8)

Remark 1. In the specific case λ = (n), Equation 8 reads:

an−1
(n) (α) =

1

αn
nn−2. (9)

We view this later formula as a generalization of the classical formula of Dénes for
the number of minimal factorizations of a long cycle in the symmetric group into a
product of transpositions.

We show the following additional theorems:

Theorem 2. Let λi ⊢ n for 1 ≤ i ≤ r and α ̸= 0. The Jack’s connection
coefficients for parameters α et 1/α are linked by

aλ1,...,λr(α
−1) = (−α)(2−r)n+

∑
i ℓ(λ

i)aλ1,...,λr(α) (10)

Theorem 3. Let an,p1,p2,...,pr(α) be the coefficients defined in equation 6 and Xi

(1 ≤ i ≤ r) r scalar indeterminate. We have the following formula for any integer
r ≥ 1: ∑

p1,p2,...,pr≥1

an,p1,p2,...,pr(α)
∏

1≤i≤r

Xpi
i =

∑
β⊢n

1

hβ(α)h′β(α)

∏
1≤i≤r

Rα
β(Xi) (11)

where :
Rα
λ(k) =

∏
s∈λ

(k + αa′(s)− l′(s)) = Jαλ (Ik). (12)

Theorem 3 is a generalization of the main formula in [3].
For indeterminate x = (x1, x2, . . .) define the Laplace Beltrami Operator by

D(α) =
α

2

∑
i

x2i
∂2

∂x2i
+
∑
i

∑
j ̸=i

xixj
xi − xj

∂

∂xi
(13)

Theorem 4. Let arλ(α) be the Jack’s connection coefficients defined by 7. We
have the following equality:

arλ(α) =
1

αnn!
[pλ]D(α)r(pn1 ), (14)

where [pλ]D(α)r(pn1 ) denotes the coefficient of pλ in the power sum expansion of
D(α)r(pn1 ).
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We continue studying of semirings with semilattice multiplication, namely semi-
rings in which the multiplicative semigroups are commutative and idempotent (see
[1]).

Semiring is an algebraic system ⟨S,+, ·⟩ such that ⟨S,+⟩ is a commutative
semigroup, ⟨S, ·⟩ is a semigroup, the multiplication is distributive over the addition.
If there is an element 0 in the semiring S, such that x + 0 = 0 + x = x and
x · 0 = 0 · x = 0 for all x ∈ S, then we call S a semiring with a zero 0.

Semiring with identities x + x = x, x + y = xy is called mono-semiring. We say
that constant addition is held in the semiring, if the identity x+ y = u+ v is true.

For any semiring S the zero element 0 can be externally attached . If semilattice
multiplication is held in S , then a semiring S∪{0} is called semiring with semilattice
multiplication.

Theorem 1. Any subdirectly irreducible semiring S with semilattice multiplica-
tion satisfies the following properties:

1) there is the 1 in S; S \ {1} is the ideal in S with its own unity element e;
2) smallest nonzero congruence in S sticks together only the elements 1 and e;
3) in S equality 3 = 2 is true or equalities 3 = 1 and e = 2 are true.

From the property 3 of the proposition 1 the next follows:

Theorem 2. Arbitrary semiring with semilattice multiplication is a subdirect
product semirings with semilattice multiplication with the identity 3x = x and
semirings with semilattice multiplication with the identity 3x = 2x.
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On an arbitrary semiring S let’s consider binary relations ∼ and ≈ that are
defined by the next way:

x ∼ y ⇔ ∃s, t ∈ S (x+ s = y, y + t = x);

x ≈ y ⇔ 3x = 3y.

Proposition 1. For any semiring S with semilattice multiplication following
statements hold:

1) relation ∼ is the smallest congruence on S on which faktorsemiring satisfies
the identity 3x = 2x;

2) relation ∼ is the smallest congruence on S on which faktorsemiring satisfies
the identity 3x = x;

3) intersection of congruences ∼ and ≈ is the relation equality in S.

We denote by M variety of all semirings with semilattice multiplication. For
semirings S1, . . . , Sn we denote by M(S1, . . . , Sn) the variety of semirings that is
defined by the set of identities performed on each of the semirings S1, . . . , Sn. We
denote by M(f = g) the subvariety of M that is generated by the semiring identity
f = g.

It is obviously that to within an isomorphism there are four two-element commu-
tative multiplicative idempotent semirings: two-element chain B, two-element field
Z2, two-element mono-semiring D = {1,∞} with a identity 1, two-element semiring
T = {1,∞} with a identity 1 and constant addition.

Let N = M(B,Z2,D,T).

Proposition 2. Lattice of subvarieties of M has exactly 4 atoms M(B), M(Z2),
M(D), M(T) and it is atomic.

Proposition 3. For any semiring S following statements hold:
1) S ∈M(B,Z2,T) ⇔ S satisfies the identity x+ 2xy = 3x;

2) S ∈M(B,D,T) ⇔ in S the dual distributive law x+yz = (x+y)(x+ z) holds
⇔ S ∈ N and the identity 3x = 2x is true;

3) S ∈M(Z2,D,T) ⇔ S satisfies the identity x+ 2xy = 3xy;

4) S ∈M(B,Z2,D) ⇔ S ∈ N and S satisfies the identity 3x = x.

Proposition 4. In the lattice of subvarieties of M following equalities hold:
1) N = M(x+ 2xy + yz = x+ 2xz + yz);

2) M = M(3x = x) ∨M(3x = 2x);

3) M(3x = 2x)∩M(3x+y = x+y) = M(2x+y = x+y) = M(2x = x)∨M(T);

4) M(3x+ y = x+ y) = M(3x = x) ∨M(T).

Proposition 5. Lattice of subvarieties of N is 16-element Boolean lattice.
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Semiring S is called free in the class K of semirings with the set X of free
generators if for any semiring T ∈ K an arbitrary mapping X → T extends to a
homomorphism S → T. Thus, any semiring from the class K is a homomorphic
image of the corresponding free semiring from K.

Free semiring in the variety M with the set X of free generators we denote by
FM(X) or FM|X| where |X| is the cardinality of X. For example, FM1 semiring
with one free generator a = 1 has the form FM1 = {1, 2, 3} by the identity 4x = 2x.

Let S is a semiring with zero 0 and unity element 1, and P is a multiplicative
semigroup. Free (left) S-semimodule SP with a basis {p : p ∈ P} is the set of finite
(non-zero) formal sums

s =
∑
p∈P

almost all sp=0
some sp ̸=0

spp (sp ∈ S, p ∈ P ),

with operations (∑
spp
)

+
(∑

tpp
)

=
∑

(sp + tp) p

and
s
(∑

spp
)

=
∑

sspp.

Semimodule SP becomes semiring, if the multiplication is defined by the formula:

(∑
spp
)(∑

tpp
)

=
∑
p∈P

∑
u,v∈P
uv=p

sutv

 p.

Semiring SP is called semiring semigroup semigroup P over a semiring coeffici-
ents S. We identify p ≡ 1p. 0p means non-availability of corresponding term in the
formal sum s.

We denote by T semiring with zero FM1∪{0}. For a free semilattice L(X) with
the set X = {xi : i ∈ I} of free generators in the variety of all semilattices we
consider semigroup semiring TL(X). It is a semiring (nonzero) polynomials without
constant term in the variables xi with coefficients 0, 1, 2, 3 ∈ T. We obtain that
FM(X) ∼= TL(X)/ρ, where ρ — the smallest congruence on which elements u + v
and u+ v + 2uv equivalent for any (disjoint) words u, v ∈ L(X).

Proposition 6. Following equalities hold: |FM1| = 3, |FM2| = 39, |FM3| =
2289.

We note that the free multiplicatively idempotent semiring with set X of free
generators is finite if and only if the set X is finite. This follows from the known
fact about the finiteness of finitely generated idempotent semigroups.
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Partial semirings C+
∞(X) of continuous functions on topological spaces X with

values in the semiring [0,∞] are studied [3]. The semiring [0,∞] is considered
with the usual topology. Partial semiring of all continuous non-negative real-valued
functions on topological space X with pointwise defined operations of addition and
multiplication of functions is denoted C+(X).

Partial semirings C+
∞(X) differ from semirings because product of some functions

in partial semirings C+
∞(X) might be not defined (be discontinuous). Non-empty

set I ⊆ C+
∞(X) is the ideal in partial semirings C+

∞(X) if for each f, g ∈ I and
h ∈ C+

∞(X) functions f + g and fh belong to the ileal I, and fh is the continuous
function.

The ideal I ̸= S of partial semiring S is called: maximal if in S there are no
any ideals that differ from S and strictly contain I; simple if for each a, b ∈ S
condition ab ∈ I implies a ∈ I or b ∈ I; strong (subtractive), if a+ b ∈ I ⇒ a, b ∈ I
(a+ b, a ∈ I ⇒ b ∈ I) for each a, b ∈ S.

Topological space is called Tychonoff space (Hewitt space) if it is homeomorphic
to a (closed) subspace of some Tychonoff power of R. Tychonoff space is called P-
space if every its zero-set is open set in it (see [2]). For any function f ∈ C+

∞(X) we
define zero-set Z(f) = {x ∈ X : f(x) = 0}, closed set H(f) = {x ∈ X : f(x) =∞}
and open set cozf = X \ (Z(f)

∪
H(f)).

For any function f ∈ C+
∞(X) let’s define functions f ∗, f(1) ∈ C+

∞(X) by the next
way:

f ∗(x) =


∞, if x ∈ Z(f),

0, if x ∈ H(f),

f−1(x), if x ∈ cozf ;

f(1)(x) =

{
f(x), if x ∈ f−1[0; 1],

1, if x ∈ f−1[1;∞].
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The product of functions ff ∗ equals 1 on cozf and equals 0 on Z(f) ∪ H(f)
so ff ∗ has not to be a continuous function. The function ff ∗ is continuous if and
only if the zero-set Z(f) and H(f) = Z(f ∗) are open. Therefore the partial semiring
C+

∞(X) is semiring then and only then when X is P-space.
Let X be an arbitrary Tychonoff space and βX be its Stone-Cech compactifi-

cation [1]. Extension of function f ∈ C+
∞(X) to βX is uniquely determined and

denoted fβ ∈ C+
∞(βX). For every function f ∈ C+

∞(βX) we have f = (f |X)β. For
any function g ∈ C+

∞(X) equality g = gβ|X holds.
Let p ∈ βX. Following sets are ideals in C+

∞(X):

Mp =
{
f ∈ C+

∞(X)|p ∈ Z(f)
βX
}
,

Mp,∞ =
{
f ∈ C+

∞(X)|p ∈ Z(f) ∪ H(f)
βX
}
,

Op =

{
f ∈ C+

∞(X)|p ∈
(
Z(f)

βX
)0}

,

Op,∞ =

{
f ∈ C+

∞(X)|p ∈
(
Z(f)

βX
)0

or p ∈
(
H(f)

βX
)0}

.

Inclusions Op ⊆ Mp ⊂ Mp,∞ are obvious. In C+
∞(X) there are not any maximal

ideals besides Mp,∞ [3].

Lemma 1. Let J be ideal of partial semiring C+
∞(X) such that J *Mp,∞. Then

there exists a function f ∈ J \Mp,∞ with values in the unit interval [0, 1].

Lemma 2. For any two distinct points p, q ∈ βX equality Op + Oq = C+
∞(X) is

true. Ideal Op is contained in a unique maximal ideal Mp,∞.

Lemma 3. In the partial semiring C+(X) for any functions f, g ∈ C+
∞(X)

functions f(1) + g(1) and (f + g)(1) divide each other.

Lemma 4. If P is a prime ideal in C+
∞(X) and P ⊆ Mp, p ∈ βX then for any

function f ∈ C+
∞(X) f ∈ P then and only then when f(1) ∈ P .

Theorem 1. For Tychonoff space X any prime ideal P of partial semiring
C+

∞(X) satisfies the following properties:
1) P contains the ideal Op for some uniquely determined point p ∈ βX;
2) if Op ⊆ P , where p ∈ βX, then P ⊆Mp,∞;
3) if P ⊆Mp, where p ∈ βX, then P is the strong ideal;
4) if Op ⊆ P ̸⊆ Mp for some point p ∈ βX, then the ideal P is not subtractive

and Op,∞ ⊆ P .

Corollary 1. Every prime ideal of partial semiring C+
∞(X) is contained in an

unique maximal ideal.
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Corollary 2. For any prime ideal P of partial semiring C+
∞(X) following

conditions are equivalent: 1) P is strong ideal; 2) P is subtractive ideal; 3) P ⊆Mp

for (unique) point p ∈ βX.

Since ideals Mp are strong prime ideals then from the corollary 2 we obtain the
next:

Theorem 2. Let X be Tychonoff space. Ideals Mp, p ∈ βX and only they are
maximum ideals among all the strong (subtractive) prime ideals of partial semiring
C+

∞(X).

Note 1. Like classical Gelfand-Kolmogorov theorem for rings C(X) [2, chapter
7], on a Tychonoff space X there exists a homeomorphism between spaces of all
maximal ideals of partial semiring C+

∞(X) and compactification βX. Topological
space MaxC+

∞(X) with Stone–Zariski topology is called maximal spectrum of partial
semiring C+

∞(X). We have MaxC+
∞(X) ≈ βX.

Lemma 5. For any function f ∈ C+
∞(X) the following statements are true:

1) H(f) = ∅⇔ for any maximal ideal M of partial semiring C+
∞(X), if f ∈ M

then f ∈ P for the maximal strong prime ideal P ⊂M ;
2) Z(f) = ∅ ⇔ for any maximal ideal M of partial semiring C+

∞(X) if f ∈ M
then f ̸∈ P for the maximal strong prime ideal P ⊂M .

According Lemma 5 conditions H(f) = ∅ and Z(f) = ∅ are expressed with the
terms of the partial semiring C+

∞(X). Therefore the following statements is true:

Proposition 1. For any homomorphism α : C+
∞(X) → C+

∞(Y ) of the partial
semirings the equality α(C+(X)) = C+(Y ) is true.

From the proposition 1 and the monograph [4, Chapter 2] we obtain:

Theorem 3. Any Hewitt space X isuniquely defined up to homeomorphism by
the partial semirings C+

∞(X).
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Recall that a dimonoid [1] is an algebra with two binary associative operations
satisfying some three axioms. A dimonoid (D,⊣,⊢) is called a left zero and right
zero dimonoid, if (D,⊣) is a left zero semigroup and (D,⊢) is a right zero semigroup.

The construction of a free product of arbitrary dimonoids was given in [2]. Here
the free product of left zero and right zero dimonoids is characterized.

Let {(Di,⊣i,⊢i)}i∈X be a family of arbitrary pairwise disjoint left zero and right
zero dimonoids. Denote by F [(Di,⊣i)]i∈X the free product of semigroups (Di,⊣i), i ∈
X, and singleton semigroups {i}, i ∈ X.

Let

R(Di)i∈X = {(sγ1 ...sγl ...sγk ,m) ∈ F [(Di,⊣i)]i∈X × N | k > m},

R⋆(Di)i∈X = {(sγ1 ...sγl ...sγk ,m) ∈ R(Di)i∈X |

sγl ∈ ∪i∈XDi ⇔ l = m, 1 6 l 6 k},

µ : (∪i∈XDi) ∪X → (∪i∈XDi) ∪X : a 7→ aµ =

{
i, a ∈ Di,
a, a ∈ X.

If k = 1, then the sequences sγ1 ...sγl ...sγk−1
, sγ2 ...sγl ...sγk will be regarded empty.

Define operations ⊣ and ⊢ on R⋆(Di)i∈X by

(sγ1 ...sγl ...sγk ,m)⊣(sα1 ...sαl
...sαr , t) =

=

{
(sγ1 ...sγl ...sγksα1µ...sαl

µ...sαrµ,m) , sγkµ ̸= sα1µ,
(sγ1 ...sγl ...sγksα2µ...sαl

µ...sαrµ,m) , sγkµ = sα1µ,

(sγ1 ...sγl ...sγk ,m)⊢(sα1 ...sαl
...sαr , t) =

=

{
(sγ1µ...sγlµ...sγkµsα1 ...sαl

...sαr , k + t) , sγkµ ̸= sα1µ,(
sγ1µ...sγlµ...sγk−1

µsα1 ...sαl
...sαr , k + t− 1

)
, sγkµ = sα1µ

for all (sγ1 ...sγl ...sγk ,m), (sα1 ...sαl
...sαr , t) ∈ R⋆(Di)i∈X . The algebra (R⋆(Di)i∈X ,⊣

,⊢) will be denoted by R̆(Di)i∈X .

Theorem 1. R̆(Di)i∈X is the free product of left zero and right zero dimonoids
(Di,⊣i,⊢i), i ∈ X.

Structural properties of the dimonoid R̆(Di)i∈X are investigated.
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Let X be an arbitrary nonempty set and ρ ⊆ X × X. The ordered pair (φ, ψ)
of transformations φ and ψ of a set X is called an endotopism [1] of ρ if for all
a, b ∈ X the condition (a, b) ∈ ρ implies (aφ, bψ) ∈ ρ. The set of all endotopisms of
ρ is a semigroup with respect to the componentwise multiplication operation. This
semigroup is called an endotopism semigroup of a relation ρ and is denoted by Et(ρ).

The endotopism (φ, ψ) ∈ Et(ρ) is called a half-strong endotopism if for all a, b ∈
X the condition (aφ, bψ) ∈ ρ implies the existence of preimages a′ ∈ aφφ−1 and
b′ ∈ bψψ−1 such that (a′, b′) ∈ ρ. The set of all half-strong endotopisms of ρ we
denote by HEt(ρ).

The endotopism (φ, ψ) ∈ Et(ρ) is called a locally strong endotopism if for all
a, b ∈ X the condition (aφ, bψ) ∈ ρ implies that for every a′ ∈ aφφ−1 there exists
b′ ∈ bψψ−1 such that (a′, b′) ∈ ρ and analogously for all preimages of bψ. We denote
the set of all locally strong endotopisms of ρ by LEt(ρ).

The endotopism (φ, ψ) ∈ Et(ρ) is called a quasi-strong endotopism if for all
a, b ∈ X the condition (aφ, bψ) ∈ ρ implies that there exists a′ ∈ aφφ−1 such that
for every b′ ∈ bψψ−1 we have (a′, b′) ∈ ρ and analogously for a suitable preimage of
bψ. By QEt(ρ) we denote the set of all quasi-strong endotopisms of ρ.

The endotopism (φ, ψ) ∈ Et(ρ) is called a strong endotopism if for all a, b ∈ X
the condition (aφ, bψ) ∈ ρ implies that (a, b) ∈ ρ. We denote the set of all strong
endotopisms of ρ by SEt(ρ). It is not hard to check that SEt(ρ) is a subsemigroup
of Et(ρ).

The ordered pair (φ, ψ) of permutations φ and ψ of a setX is called an autotopism
of ρ ⊆ X×X if (a, b) ∈ ρ iff (aφ, bψ) ∈ ρ for all a, b ∈ X. The set of all autotopisms
of ρ we denote by At(ρ). Obviously, At(ρ) is a subgroup of Et(ρ) for any ρ on X.

For an arbitrary set X, the relations iX = {(a, a)|a ∈ X} and ωX = X ×X are
called identity and universal relations on X, respectively. A binary relation ρ on X
is called trivial if ρ = iX or ρ = ωX .

We denote the set of all equivalence relations on a set X by Eq(X) and the set
of all equivalence relations on X with n classes of a cardinality ≥ 2 by Eqn(X).
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Lemma 1. The set LEt(α), α ∈ Eq(X), is a semigroup if and only if one of
following conditions holds:

(i) α is an identity equivalence;
(ii) there exists a unique class A ∈ X/α such that |A| ≥ 2.

Lemma 2. The set HEt(α), α ∈ Eq(X), is a semigroup if and only if α is a
trivial equivalence.

Lemma 3. For all α ∈ Eq(X), we have QEt(α) = SEt(α).

A semigroup S is a called regular [2] if for all a ∈ S there exists x ∈ S such that
axa = a.

The regularity of semigroups of all types of endotopisms of an arbitrary equiva-
lence describes the following theorem.

Theorem 1. (i) The semigroup Et (α) , α ∈ Eq(X), is regular if and only if α
is a trivial equivalence;

(ii) The semigroup HEt(α), where α is trivial, is regular;
(iii) The semigroup LEt(α), where α ∈ Eq1(X) or α = iX , is regular;
(iv) The semigroup SEt(α), α ∈ Eq(X), is regular if and only if quotient-set

X/α is finite;
(v) The group At(α) is regular for any α ∈ Eq(X).

A semigroup S is called coregular [3] if for all a ∈ S there exists x ∈ S such that

axa = xax = a.

Theorem 2. (i) The semigroup Et (α) , α ∈ Eq(X), is coregular if and only if
|X| ∈ {1, 2};

(ii) The semigroup HEt(α), where α is trivial, is coregular if and only if Et (α)
is coregular;

(iii) The semigroup SEt(α), α ∈ Eq(X), is coregular if and only if |X| ∈ {1, 2}
or |X| = 3, α /∈ {iX , ωX};

(iv) The semigroup LEt(α), where α ∈ Eq1(X) or α = iX , is coregular if and
only if SEt (α) is coregular;

(v) The group At (α) , α ∈ Eq(X), is coregular if and only if SEt (α) is coregular
or |X| = 4, |X/α| = 3.

Note that for any ρ ⊆ X ×X, we have the following sequence of inclusions:

Et(ρ) ⊇ HEt(ρ) ⊇ LEt(ρ) ⊇ QEt(ρ) ⊇ SEt(ρ) ⊇ At(ρ).

With this sequence we associate the sequence of number (s1, s2, s3, s4, s5), where
si ∈ {0, 1}, i ∈ {1, ..., 5}. Here 1 stands ̸= and 0 stands = at the respective position
in the above sequence for endotopisms. For example, s2 = 0 indicates that HEt(ρ) =
LEt(ρ), and s5 = 1 means that SEt(ρ) ̸= At(ρ). The integer

∑5
i=1 si2

i−1 is called
the endotype (or the endotopism type) of ρ relative to its endotopisms and is denoted
by Ettype(X, ρ).
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Theorem 3. For any equivalence α on a set X, we have

Ettype(X,α) =



0, |X| = 1,
4, 2 ≤ |X| <∞, α = iX ,
16, 2 ≤ |X|, α = ωX ,
20, |X| =∞, α = iX ,
23, α ̸= iX , α ̸= ωX .
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In 1940 I.M. Vinogradov [1] used the method of trigonometric sums proved the
asymptotic formula for the number of primes in intervals of the form [(2m)2, (2m+
1)2), m ∈ N .

In 1986 S.A. Gritsenko [2] proved the asymptotic formula for the number of
primes p such p 6 x and

p ∈ [(2m)c, (2m+ 1)c), (1)

где m ∈ N, и c ∈ (1, 2]. Here, intervals (1) have known as short intervals or
Vinogradov‘s intervals.

In 1988 S.A. Gritsenko solved problems with primes of (1) ( [3], [4]).
In 1992 A. Balog and K. J. Friedlander was also solved problems with primes

from the intervals of the form [5].
Note that in the works [3]-[5] additive problems are ternary or solved by the

scheme of the ternary problem.
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There is interest in binaries additive problems with primes from the intervals
of the form (1). There are no options theorem Bombieri-Vinogradova for Prime
numbers of the intervals of the form (1), which is equal to the classical theorem of
Bombieri-Vinogradova. Therefore, to solve the binary additive problem with primes
from the interval of the form (1) is currently not possible.

The author of this work were solved some binary additive problem with semisimp-
le numbers from the Vinogradov‘s intervals ([6], [7]). The report will be considered
another binary additive problem with semisimple numbers of a special form. This
problem is analogous to Hardy-Littlewood‘s problem with semisimple numbers. In
1965 Yu. V. Linnik has solved a similar problem using a dispersion method.

The paper considers Diophantine equation

xy + p1p2 = n,

where p1 and p2 are primes, x and y are natural numbers, as well as conditions
are met: numbers p1p2 are in the intervals of the form (1), m ∈ N, c ∈ (1, 2] and
pi > exp(

√
lnn ) (i = 1, 2).

The number of solutions of this equation denote by J1(n). We used the method
of trigonometric sums I.M. Vinogradov and proved the asymptotic formula:

J1(n) =
1

2
J(n)(1 +O(

ln ln lnn

ln lnn
)),

where
J(n) ∼ c0n ln lnn,

c0 =
∞∑
r=1

µ2(r)

rφ(r)
.
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